
 

Abstract

 

Dynamic contours, or snakes, provide an effective method
for tracking complex moving objects for segmentation and
recognition tasks, but have difficulty tracking occluding
boundaries on cluttered backgrounds. To compensate for
this shortcoming, dynamic contours often rely on detailed
object-shape or -motion models to distinguish between the
boundary of the tracked object and other boundaries in the
background. In this paper, we present a complementary
approach to detailed object models: We improve the dis-
criminative power of the local image measurements that
drive the tracking process. We describe a new, robust exter-
nal-energy term for dynamic contours that can track
occluding boundaries without detailed object models. We
show how our image model improves tracking in cluttered
scenes, and describe how a fine-grained image-segmenta-
tion mask is created directly from the local image measure-
ments used for tracking.

 

1  Tracking Boundaries

 

Tracking visual features in a series of images is an
important task both for vision-based control and for
rotoscoping applications. Dynamic contours [Kass87], and
related active tracking techniques, are well suited for both
applications because they combine simple, light-weight
object models with rapid updates.

Dynamic contours track boundaries by minimizing the
sum of an external force, from a local image measure, and
an internal force, from a shape-dynamics model. A
dynamic contour tracks the indicated boundary by finding
the shape that minimizes the combined external and inter-
nal forces. The external force drives the dynamic contour
according to the current image appearance. The internal
force increases the spatial and temporal continuity of the
tracked boundary.

Dynamic contours usually employ a simple image-con-
trast measure to define the external forces on the model.
This approach works well as long as the boundary being
tracked is not an occluding boundary, such as that of a sil-
houette. However, for tasks such as rotoscoping, it is the
occluding boundaries that must be tracked.

When the boundary to be tracked is an occluding
boundary, the dynamic contour often confuses background
texture for the desired boundary. Figure 1 shows a tracking
failure when a dynamic contour originally marking the
edge of the pen cap instead sticks to the edge of the book.

To help us disambiguate the contrast edges, of course,
we could use better models of how books and pens move.
Recent work has improved the shape-dynamics models

[Cootes93, Blake94, Terzopolous92]. We could also track
multiple hypotheses [Isard96] and use future shape distor-
tions to select the correct tracking sequences. These
approaches require detailed shape and motion models for
each object that we hope to track.

In this paper, we propose an alternative to using simple
contrast measures for the external-energy term of dynamic-
contour models. Our image model describes the local con-
trast pattern but is largely insensitive to changes in back-
ground contrast. After reviewing previous image models
used in tracking in Section 2, we describe this new image
model, called radial cumulative similarity (RCS), in Sec-
tion 3. In Sections 4 and 5, we develop an external-force
term based on the RCS transform. In Section 6, we demon-
strate the potential of this RCS-based force in tracking and
in rotoscoping. Finally, we summarize and conclude in Sec-
tion 7.

 

2  Local Image Models

 

There are two independent choices that we must make
when implementing dynamic contours: the nature of the
external-force term, which responds to the structure of the
image, and the nature of internal-force term, which cap-
tures the global shape or dynamics model. Our image
model improves the external-force or image-structure term.
Therefore, in this section, we review previous work in local
image models.

Most dynamic contours use a simple edge-based model
as their external-force term [Kass87, Yuille89]. The magni-
tude of the external force on a node is directly related to the
distance between the node and the nearest edge. These
edge-based forces are largely invariant to illumination and
to background color at occlusions. This invariance is
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Figure 1: Tracking errors. Edge-based dynamic contours tend to 
stick to whichever each edges are closest. When the pen moves 
down rapidly, the edge-based dynamic contour finds the solution 
that tracks the background edges instead of the pen itself.
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bought by discarding considerable image information and
results in the tracking ambiguities discussed in Section 1.

Image patches are an alternative to an edge-based exter-
nal force term. To use image patches as the basis for an
external-force term, we first associate a desired appearance
with each node of the dynamic contour. The external force
is then computed according to the vector distance between
the desired appearance and the patch underlying each node
[Wiskott95] or according to optical flow [Peterfreund97].
This external-force model has the advantage of potentially
using all the available color and texture information. It is,
however, unreliable near occlusions, due to mismatched
background pixels within the image patch. Since one-half
of the pixels near occlusions are from the background, the
relative motion between the foreground and background
has a strong effect on this external-force term.

We can reduce the influence of mismatched background
pixels by using robust matching techniques [Black93]. For
highly textured foreground objects, dynamic contours using
robust matching track the object outline well. However,
when the foreground object has little texture, the robust-
matching dynamic contour will drift away from the occlu-
sion boundary, toward the object interior. To see why it
does, we consider the examples in Figure 1. With robust
matching, the match error in Figure 1 from point a to b is
essentially the same as the match error from a to c: The
same background pixels around in point a are discarded as
outliers, and the untextured foreground gives little align-
ment information.

In summary, simple edge-based measures cannot distin-
guish between edges, due to lost color and texture informa-
tion. Matching local image patches suffers from outliers
due to changes in background attributes. Matching using
robust norms avoids the outlier problem but introduces
ambiguities when the foreground object has little texture.

We need an image model that
1. Captures foreground attributes (as does patch matching)
2. Captures the occlusion structure (as does edge matching)
3. Ignores background attributes (as does robust matching)

In Section 3, we describe the matching based on RCS.
The RCS transform has all three of these desired image-
model properties.

 

3  Radial Cumulative Similarity

 

The RCS transform [Darrell98] captures occlusion-
boundary information and foreground attributes while
ignoring background pixels. It describes each image loca-

tion using two distinct parts: a local color
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 and a similarity
pattern. Figure 2 shows the RCS transform of the three
points marked in Figure 1.

The local color provides point information about the
image. Its value is not influenced by nearby background
regions. Thus, the local color is a reliable—but not a dis-
tinctive—description of each location.

The similarity pattern further distinguishes locations
from one another by capturing patterns of change in the
local color. The similarity pattern highlights occlusion
boundaries, while removing the effects of background pix-
els. Conceptually, it measures similarity between the center
color and colors at nearby points, then reduces the effects
of similarity values that lie beyond contrast boundaries.
This remapping of similarity values reduces the influence
of background pixels, since the intervening occlusion
boundary will typically be marked by a contrast boundary.
Furthermore, the remapping creates a rapid transition, from
high to low similarity, which actually highlights occlusion
boundaries (as well as other contrast boundaries).

This approach is formalized in the following definitions
and equations. First, we define a mixed-indexing notation.
Given a 2D image , whose values are normalized to
between 0 and 1,  is the image value that is 
units away from , in the direction .

The RCS transform associates with each image loca-
tion, , a local color, , and a similarity pat-
tern, . The local color, , is simply the
image color smoothed over a compact region. We define the
similarity pattern, , by using point dissimilari-
ties.

The point dissimilarity, , measures the dis-

tance between the local color, , and the image val-

ues, :

 

.

 

Note that the point dissimilarity, , depends
on only the magnitude, and not on the direction, of the
color change. 

We compute the similarity pattern, , from

the point dissimilarities by propagating  radi-
ally.   Specifically,

Once the similarity pattern encounters a large dissimilarity,
it reduces the influence of the similarity values farther
along that ray, by whitening them toward 0. The point dis-
similarity on the background side of the occluding bound-
ary is expected to be large due to its arbitrary changes from
the foreground color. Cumulative integration and negative

a b c

Figure 2: The RCS transforms for points a, b, and c in Figure 1. 
The color shown in each lower-left corner is the local color for 
the RCS transform of that point; the remainder of each image 
shows the similarity pattern for that point.

 

1. We use color in our descriptions of RCS for the remainder 
of this paper. Other image properties, such as texture, can 
also be used as the basis of RCS transforms.

I
I x0 y0, r θ,( ) r

x0 y0,( ) θ

x y,( ) CI x y,( )
NI x y r θ, , ,( ) CI x y,( )

NI x y r θ, , ,( )

DI x y r θ, , ,( )
CI x y,( )

I x y, r θ,( )

DI x y r θ, , ,( ) α2 CI x y,( ) I x y, r θ,( )–
2

=

DI x y r θ, , ,( )

NI x y r θ, , ,( )
DI x y r θ, , ,( )

NI x y r θ, , ,( ) ρ DI x y ρ θ, , ,( )d
ρ r<∫–

 
 
 

exp=



 

exponentiation lessens the influence of these background
fluctuations: The larger the intervening dissimilarities, the
less background patterns affect the RCS similarity.

With isolated points, matching using RCS transforms
outperforms matching using conventional L2 or Lorenzian
norms on several difficult cases [Darrell98]. In the remain-
der of this paper, we describe modifications to the RCS
transform, for use in occlusion tracking and in rotoscoping.

 

4  Dynamic Occluding-Contour Models

 

This section describes three ways to use RCS trans-
forms: (1) as the external-force term in a sparsely sampled
version of dynamic contours, (2) as the external-force term
in a densely sampled version of dynamic contours, and (3)
as an object-profile description in automatic rotoscoping.

 

 4.1  Sparse-RCS Dynamic Contours

 

In its simplest form, tracking using RCS dynamic con-
tours is similar to matching isolated RCS samples
[Darrell98]. First, we associate each node of the dynamic
contour with a desired RCS value, taken directly from the
image pattern at the inital nodal points of the user-drawn
contour. The external force in subsequent frames is then
computed according to the vector distance between the
desired RCS and the RCS of the proposed node location.

This approach to RCS dynamic contours is fast, since
only sparse RCS samples (those at the nodal points) are
needed and since the external force at each node is indepen-
dent of the locations of the other nodes. This approach to
image matching outperforms isolated-point RCS matching,
since the internal-energy term helps to disambiguate alter-
native matches.

There are two shortcomings to the sparse-RCS dynamic
contour. The first is the lack of rotational invariance: The
RCS coordinates are tied to the image-plane coordinates,
instead of rotating with the rotation of the dynamic contour.
We can correct this shortcoming by resampling the similar-
ity patterns, using the rotation implied by the new contour
orientation. A second, more fundamental, shortcoming is
the sparseness of RCS samples that the dynamic contour
uses to determine the external forces. If the nodal points
happen to fall in an extremely low- or extremely high-con-
trast area, the very sparseness that makes this dynamic con-
tour fast makes it vulnerable to false minima.

Even with these shortcomings, sparse-RCS dynamic
contours are well suited for matching over large areas, such
as the search windows within isolated images or coarsely
sampled sequences. The sparse-RCS dynamic contour
often gives a good coarse level match, which we can refine
using a dense-RCS dynamic contour.

 

 4.2  Dense-RCS Dynamic Contour

 

We can avoid the shortcomings of the sparse-RCS
dynamic contour by using a ray from each RCS transform
along the full length of the dynamic contour. This sampling
of the RCS provides rotational invariance, since we use
rays that are perpendicular to the local contour orientation.
It also avoids the ambiguities introduced by matching only
nodal points, since the external-force term is determined by

the RCS appearance along the full length of the contour.
The RCS profile between  and  has two

parts: a local-color line, , and a similarity

profile, . The local-color line is simply

the previously defined local color, sampled on the line seg-
ment from  to . The argument 
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 indexes dif-
ferent locations along the line segment. The local-color line
is given by

where  and .

The similarity profile contains samples from the RCS
similarity patterns. The RCS similarity patterns are sam-
pled along the line segment, then these selected similarity
patterns are themselves sampled along the angle perpendic-
ular to that line segment:

where  and  are as before, and  is the left-perpendic-
ular angle to the vector .

We associate with each node of the dynamic contour a
desired RCS profile, taken along the line segments between
the current node and two neighbors. The external force in
subsequent frames is the vector distance between the
desired RCS profile and the RCS profile, using the pro-
posed node locations.

The dense-RCS dynamic contour provides rotational
invariance and avoids local minima that can distract the
sparse-RCS dynamic contour. It handles rotations, since the
axes of the similarity profiles are defined relative to the
nodal locations. It avoids local minima that can trap the
sparse-RCS dynamic contour, since it relies on the match
error along the full length of the contour, instead of just at
the nodal points. Also, the external-energy term of the
dense-RCS dynamic contour accommodates stretching
(and shrinking) of the contour, since the sample density of
the RCS profile is normalized by the segment length. This
property is useful for matching certain types of nonrigid
deformations, such as the stretching that occurs along the
edge of the lips as the mouth opens.

The dense-RCS dynamic contour is well suited for
tracking in sequences. In this case, we use the contour con-
figuration from the previous frame to estimate the position
in the current frame. To avoid accumulation of positioning
errors, when the matching error exceeds a given threshold,
we archive the current RCS profile and then update the pro-
file being used. The updated profile is a previously archived
profile, if there is an archived profile with a low enough
matching error; if not, a new profile is created from the pat-
terns in the current image [Huttenlocher93].

The dense-RCS dynamic contour is well suited for
refining a coarse match given by a sparse-RCS dynamic
contour. By initially using the sparse-RCS match, we
reduce the search area needed for the dense-RCS dynamic
contour. The dense-RCS dynamic contour then improves
the detailed alignment along the full length of the contour.
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 4.3  RCS Rotoscoping

 

RCS dynamic contours, along with their associated
RCS profiles, can be used for semi-automatic rotoscoping
of foreground objects. The artist draws a dynamic contour
in the first frame of the sequence. The drawn contour
should lie fairly close to the outer boundary of the object,
but with the full length of the contour completely inside the
object’s occluding boundary. We then close the dynamic
contour by logically connecting the first and final nodes to
make them neighboring nodes.

We propagate this closed dynamic contour through the
entire sequence using dense-RCS dynamic contours or, if
the temporal sampling is coarse, using sparse-RCS
dynamic contours (to update) followed by dense-RCS
dynamic contours with a smaller search area (to refine).
Then, we rotoscope the selected object out of the sequence
automatically, using a continuous-valued alpha-channel
sequence created from the contour position and from the
RCS profiles along the contour.

The alpha channel for each frame is initially set to 1
inside the dynamic contour and to 0 outside (Figure 3-a).
The alpha-channel values are then modified according to
the RCS profile values. Taking each line segment of the
dynamic contour in turn, we set the alpha-channel value at
each location to the maximum similarity-profile value (Fig-
ure 3-b). Finally, we increase the alpha-channel values near
the contour nodes according to the RCS similarity patterns
for the nodal point, so as to fill in the sharp angles that oth-
erwise occur at convex contour nodes (Figure 3-c).

This process extends the edges of the selected region to
the nearest edge in the image. This extension softens the
hard edges of the selected region providing a smooth roll
off. It also allows the edges of the selected region to curve
according to the details of the object’s shape, instead of
being formed from straight line segments.

The resulting rotoscoping masks may be too large if the
background region near the object’s outer boundary is simi-
lar in color to the object itself, such as the colors of the lips
and gums. The dense-RCS dynamic contour does not mis-
take these regions for object points, since it integrates the
match error along the full length of each line segment. To
create the alpha channel using a similar spatially integrat-
ing philosophy, we could modify the alpha channel using
the 1D average of the RCS profile, instead of using the full
2D appearance. This 1D average would still allow the
boundaries of the alpha-channel mask to roll-off gradually.
Unfortunately, it would also create mask edges that are a

series of straight line segments, rather than the curved
object boundaries that we want.

Instead of using spatial integration, we use temporal
integration to keep the rotoscoping mask from overexpand-
ing. In particular, we construct the alpha-channel values
using the minimum values of the RCS profile images across
the consecutive frames. We then use this (temporal-)mini-
mum similarity profile to form the alpha-channel mask.

RCS rotoscoping is appropriate for most rotoscoping
applications. In addition, we can use these alpha-channel
masks to separate disconnected layers of an image, prior to
morphing [Litwinowitz94].

 

5  Implementation Details

 

We implemented our dynamic contours using a
dynamic-programming method [Amini90]. We modified
the basic implementation of this method [Bregler95] to find
optimal solutions for closed contours: We added a layer of
deferred decisions to account for the different last-node
positions. This modification increases the memory require-
ments but does not significantly increase the computational
requirements.

As described in Section 4, the external-energy term of
our RCS dynamic contours uses the match error between
the current and the desired RCS transforms:

where  and  are the color and

the similarity errors, respectively, associated with the 

 

n

 

th
node under the current contour configuration, . For
sparse-RCS dynamic contours, the color error is the sum
squared difference between the local color in image 

 

I

 

 under
the 

 

n

 

th node and the desired local color for the 

 

n

 

th node.
The similarity error is the mean, over all radii below 

 

R

 

N

 

, of
the squared difference between the similarity pattern in
image 

 

I

 

 under the 

 

n

 

th node and the desired similarity pat-
tern for the 

 

n

 

th node. For dense-RCS dynamic contours, the
color error is the sum, over the segment, of the sum squared
difference between the color profile in image 

 

I  and the
desired color profile, both on the line segment from the nth-
node to the (n+1)th node. The similarity error is the mean,
over all radii below RN, of the squared difference between
the similarity profile in image I  and the desired similarity
pattern, both on the line segment from the nth node to the
(n+1)th node. For all our RCS dynamic contours, Rc=3,
α=10, and RN=12.

We compare our tracking performance with that
obtained with edge-based and patch-based dynamic con-
tours. For both the latter, we define the external energy term
using the evidence integrated over the full contour.

In our edge-based dynamic contour, the external energy
is the sum, over the segment, of the squared Laplacian of
the image I , on the line segment from the nth node to the
(n+1)th node. In our patch-based dynamic contour, the
external energy is the sum, over the image patch, of the
squared differences between the image I  and the desired
appearance Id on the rectangular image patch taken along
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Figure 3: Construction of the alpha 
channel. Starting from (a) the dynamic 
contour, we (b) extend the mask using 
RCS profiles and (c) fill in the gaps 
with the RCS transform values.
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the line segment from the nth node to the (n+1)th node and
extending to a distance RN to either side of the line seg-
ment.

The internal-energy term, , for all of our
dynamic contours is a simple second-order model of shape
dynamics:

where  and  are the previous and current contour con-
figurations,  is the distance between the nth and the
(n+1)th nodes, and  is related to the curvature at the
nth node. Specifically,  is the minimum distance
between the nth node and the line segment connecting the
(n–1)th and the (n+1)th nodes.

We combined linearly the internal- and external-energy
terms of the dynamic contours to get the total energy of the
dynamic contour. For simplicity, we used the same combi-
nation weights at all nodes.

6  Results
We tested our tracking and rotoscoping on three types

of input samples (Figure 4): related stills, a coarsely sam-
pled sequence; and a finely sampled sequence.

The related stills and the coarsely sampled sequence
show large displacements in a cluttered environment. For
these images, we used the sparse-RCS followed by the
dense-RCS, as outlined in Section 4.2. Our results from the
stills are shown in Figure 5. Samples from the coarsely
sampled sequences are shown in Figure 6.

The finely sampled sequence shows a low-texture,
deformable occlusion (the inside boundary of the lips),
with a similarly colored background (the teeth, gums, and
the opposite lip) along a related but distinct path. We
tracked the finely sampled sequence using dense-RCS
dynamic contours with template updating. These results are
shown in Figure 7.

The corresponding rotoscoping results are shown in
Figure 8.

 6.1  Tracking Results
The RCS dynamic contours performed best on the clut-

tered-background tests (Figures 5 and 6). In these cases,
there is a consistently high contrast across the occluding
boundary. The dynamic contour tended to drift more on the
mouth sequence (Figure 7), particularly when the lower
gums were visible. Even so, the RCS dynamic contours
remained attached to the lips throughout the sequence. It
archived four updates over the course of 115 frames, and
reused two of the archived patterns (for a total of six
updates in 115 frames).

The patch-based dynamic contour did well at matching
still images (Figure 5): The dynamic contour was far
enough inside the object boundary that the (background)
outliers within the match integral did not throw it too far
off. However, for coarsely and finely sampled sequences,
the patch-based dynamic contour did not track well. Its
tracking errors in the coarsely sampled sequence accumu-
lated over the sequence, distorting the expected shape of
the contour. On the finely sampled sequence, the patch-
based dynamic contour tracked the innermost boundary of
either teeth or lips, instead of remaining attached to the lips
when the teeth appeared.

As expected, the edge-based dynamic contour gave
poor matches when confronted with a cluttered background
(Figure 5). This poor performance continued, even when
the edge-based dynamic contour was initialized near the
correct solution and, more surprising, even in the weakly
textured mouth example. In light of this consistently poor
performance, we omitted the edge-based dynamic contour
results from Figures 6 and 7.

The improvements provided by the RCS dynamic con-
tours do not accrue without a cost: The RCS external
energy model is more expensive computationally than are
the classic edge- and patch-based dynamic-contour models.
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(a) Related stills (b) A sequence with coarse temporal sampling(c) A sequence with fine temporal sampling
(nonconsecutive frames are shown).

Figure 4: Examples of the types of frames used in testing

dense RCS sparse RCS edge-basedpatch-based

Figure 5: Dynamic-contour tracking between still frames. The reference for 
RCS and patch-based tracking was taken from the frame shown at the right.



In sparse-RCS dynamic contours, the computational com-
plexity of the external energy term is O(NMR2), where N is
the number of nodes in the contour, M is the search area in
the target image, and R2 is the size of the RCS similarity
pattern. With dense-RCS dynamic contours, the complexity
can be as high as O(LM2R), where L is the total length of
the contour. This increased complexity results from the
dense RCS sampling (changing the dependence from N to
L) and from the dependence of the external force at each
node on the neighboring nodes (changing the dependence
from M to M2). Caching and interpolating samples of the
similarity profiles reduce the computational complexity to
O(LMR2). Finally, if speed is essential, we can reduce the
computational complexity to O(LMR) by using a single,
nominally perpendicular angle for each inter-nodal seg-
ment, as well as using caching.

 6.2  Rotoscoping Results
We also used the dense-RCS dynamic contours for

semi-automatic rotoscoping. The results are shown in Fig-
ure 8.We include both halves of the rotoscoping result: The
foreground piece shows where the rotoscoping mask was
too large, and the background piece shows where it was to
small.

Again, as expected, the rotoscoping process worked
especially well on the high-contrast backgrounds (the stills
and the coarsely sampled sequence). Its tendency to clip
just inside the object’s outer boundary, instead of exactly on
it, is useful if the foreground object is the thing that is kept,
but it leaves a small rim around the hole in the background

sequence. In contrast, on the mouth sequence, the rotoscop-
ing mask tended to associate too much of the interior of the
mouth (the background) with the surrounding lips (the fore-
ground). Most of this over-inclusion was removed by the
temporal integration described in Section 6.2.

7  Conclusions
We have presented a new external-energy model for

dynamic contours, based on the RCS profile, which is both
stable and distinctive at object’s outer boundaries. Using
this model, RCS dynamic contours tracked occluding
boundaries in cluttered scenes, with the simplest of inter-
nal-energy terms. The RCS profile is also useful in semi-
automatic rotoscoping: The artist marks the object outline
just once, in only the first frame of the movie sequence.
From that starting position, the RCS dynamic contours
track the outline in subsequent frames. Finally, the
rotoscoping mask itself is tailored to the detailed outline of
the object by the RCS profile. The strength of our external-
energy model is illustrated by the results shown in Figures
5 through 7. The quality of our rotoscoping method is illus-
trated in Figure 8.

References
A. Amini, T. Weymouth, and R. Jain. “Using Dynamic

Programming for Solving Variational Problems in Vision,”
IEEE Trans. PAMI 12(9): 855–867, 1990.

M. Black and P. Anandan. “A Framework for Robust
Estimation of Optical Flow,” Proc. ICCV, pp. 263–274.
Berlin, Germany, 1993.

A. Blake and M. Isard. “Three-Dimensional Position
and Shape Input Using Video Tracking of Hands and Lips,”
Proc. SIGGRAPH’94, pp. 185–192, Orlando, FL, 1994.

C. Bregler and M. Slaney. “Snakes,” IRC–TR 1995-
017, Interval Research Corporation, Palo Alto, CA, 1995.
(see http://web.interval.com/papers/1995-017/)

T. Cootes, C. Taylor, A. Lanitis, D. Cooper, and D. Gra-
ham. “Building and Using Flexible Models Incorporating
Grey-Level Information,” Proc. ICCV, pp. 242–246, Berlin,
Germany, 1993.

T. Darrell, “A Radial Cumulative Similarity Transform
for Robust Image Correspondence,” Proc. CVPR, Santa
Barbara, CA, 1998.

D. Huttenlocher, J. Noh, and W. Rucklidge. “Tracking
Non-rigid Objects in Complex Scenes,” Proc. ICCV, pp.

dense RCS patch-based
Figure 6: Dynamic-contour tracking on 
a coarsely sampled sequence.

Figure 7: Dynamic-
contour tracking on 
finely sampled 
sequences (frames 
45,107, and 111 are 
shown here)

dense
RCS

patch
based



93–101, Berlin, Germany, 1993.
M. Isard and A. Blake. “Visual Tracking by Stochastic

Propagation of Conditional Density,” Proc. ECCV, pp. 343–
356, Cambridge, England, 1996.

M. Kass, A. Witkin, and D. Terzopolous. “Snakes:
Active Contour Models,” Proc. ICCV, pp. 259–268, Lon-
don, England, 1987.

P. Litwinowicz and L. Williams. “Animating Images
with Drawings,” Proc. SIGGRAPH, pp. 409-412, Orlando,
FL, 1994.

N. Peterfreund. “The Velocity Snake,” Proc. IEEE Non-
rigid and Articulated Motion Workshop, pp. 70–79. San
Juan, Puerto Rico, 1997.

D. Terzopolous and R. Szeliski, “Tracking with Kalman
Snakes,” in Active Vision (eds. A. Blake, A. Yuille), pp. 3–
20, MIT Press, Cambridge, MA, 1992.

L. Wiskott, J. Fellous, N Kruger, and C. von der Mals-
burg, “Face Recognition and Gender Determination,” Inter-
national Workshop on Automatic Face and Gesture
Recognition, pp. 92–97. Zurich, Switzerland, 1995.

A.L. Yuille, D.S. Cohen, and P.W. Hallinan, “Feature
Extraction from Faces Using Deformable Templates,” Proc.
CVPR, pp. 104-109. San Diego, CA, 1989.

Figure 8

(a) Related stills.

Figure 8: Results from automatic rotoscoping. We generated these examples using RCS dynamic contours (Sections 4.1 and 4.2)
to track and using approach described in Section 4.3 to create the alpha-channel.

(b) Coarsely sampled
sequence. 

(c) Finely sampled
sequence.


