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Abstract 

In this paper, we introduce Waveprint, a novel method for 

audio identification.  Waveprint uses a combination of 

computer-vision techniques and large-scale-data-stream 

processing algorithms to create compact fingerprints of audio 

data that can be efficiently matched.  The resulting system has 

excellent identification capabilities for small snippets of audio 

that have been degraded in a variety of manners, including 

competing noise, poor recording quality, and cell-phone 

playback.  We explicitly measure the tradeoffs between 

performance, memory usage, and computation through 

extensive experimentation. 

 

1 Introduction 

Audio fingerprinting provides the ability to link short, 

unlabeled, snippets of audio content to corresponding data 

about that content.   There are an immense number of 

applications for audio fingerprinting.  In content- 

management systems, it can help follow the use of music and 

other audio material.  This ability is increasingly important as 

more content is repurposed and recombined [6][13]. It 

provides the ability to automatically identify and cross-link 

background audio, such as songs.  Tagging of songs with the 

performing artist’s name, album or other metadata can be 

automatically accomplished [7][14].     

Audio fingerprinting also enables numerous applications in 

the realm of enhanced television, from interactivity without 

imposing extraneous hardware constraints [4] to automatic 

advertisement detection and replacement [2].    Unlike many 

competing technologies, the goal of audio fingerprinting is to 

perform the recognition without the use of any extraneous 

information such as watermarks or pre/post transmission of 

inaudible (to the human ear) data. 

There are a number of issues that make fingerprinting a 

challenging task.  The simplest approaches, directly 

comparing the audio, or spectrograms of the audio, will not 

work.  The query and stored version of a song may be aurally 

similar while having distinct bit representations.  For 

example, they may be recorded at different quality settings, 

compression schemes, equalization settings, reference codecs, 

etc.; any of these factors would render naïve comparisons 

ineffective.   

Numerous difficulties exist when moving to techniques that 

do not require exact bit-level matches.  First, in many 

applications, the system must be able to function with only 

short snippets of audio content because often a full song will 

not be available.  Second, since often only song fragments are 

given, in the vast majority of realistic scenarios, there is no 

fine or even coarse alignment of the audio content; it may 

occur anywhere within a song.  Other difficulties arise in real-

world usage.  Often, songs are 'sampled' in other songs, 

thereby making the matches more ambiguous.  When 

identifying songs played on a radio, a new set of difficulties 

arise because radio stations may change the speed of a song 

[12] to fit their programming requirements. Finally, there are 

difficulties introduced through the numerous forms of 

playback available to the end consumer.  Music that is played 

through a cell phone, computer speakers, or high-end audio 

equipment will have very different audio characteristics that 

must be taken into account.  

2 Previous Work 

Many audio-fingerprinting techniques use low-level features 

that attempt to compactly describe the audio signal without 

assigning higher-level meaning to the features.  This approach 

is used in our study.  Three of the most widely referenced 

approaches in this class are described here.  One of the most 

widely used systems [8], uses overlapping windows of mono-

audio from which to extract interesting features.  Overlapping 

windows must be used to maintain time-shift invariance for 

the cases in which exact time alignment is not known. The 

spectral representation of the audio can be constructed in a 

variety of manners (by measuring the energy of the Mel-

Frequency Cepstrum Coefficients (MFCCs) or Bark 

Frequency Cepstrum Coefficients (BFCCs)), BFCCs are used 

in their study.  In their study, 33 BFCC bands are used that lie 

in the 300-2000 Hz range.  Every 11.6 milliseconds, a sub-

fingerprint is generated that covers a frame of 370 

milliseconds.  The large overlap in successive frames ensures 

that the sub-fingerprints vary slowly over time.  The sub-



 

 

fingerprints are a vector of 32-bits that indicate whether the 

difference in successive BFCC bands increases or decreases 

in consecutive frames. These sub-fingerprints are largely 

insensitive to small changes in the audio signal since no 

actual difference values are kept; instead, only the signs over 

consecutive frames compose the sub-fingerprint.  Given this 

fingerprint (the sequence of sub-fingerprints), comparisons 

are simple; the difference between the frames is simply the 

Hamming distance of the fingerprints.  The sub-fingerprints 

used in their study are compact and fast to compute.   

A recent extension to the above work was presented in [10].  

Ke used the same basic architecture of [8], but introduced a 

learning approach into the feature-selection process.   An 

important insight provided by [10] is that the 1-D audio signal 

can be processed as an image when viewed in a 2-D time-

frequency representation.  The learning approach, based on 

AdaBoost, is often used in computer-vision applications such 

as face detection [16].  They presented a version of AdaBoost 

that learns features that integrate the energy in selected 

frequencies over time.  The duration and frequencies are 

selected via the AdaBoost algorithm; they are similar to the 

"boxlet" features used in [16] (average intensities of 

rectangular sub-regions of the spectrogram image). The basis 

of selection for the features is the discriminative power of the 

rectangular region in being able to differentiate between when 

2 frames are the same (when one is degraded by noise) and 

when they are different.  Thirty-two boxlet features are 

selected, each yielding a binary value.  These 32 bits are then 

used in an analogous procedure to the 32-bit features found 

by [8].  For lookup of new queries, their system processes the 

audio-image (similarly spaced to [8]), to create the 32-bit sub-

fingerprint using the learned features. Then, all sub-

fingerprints within a Hamming distance of 2 bits are searched 

for in the database.  A measure of temporal coherence is 

provided by a simple transition model. 

An alternate approach is explored in [1]; their work 

introduces Distortion Discriminant Analysis (DDA), a 

method to extract noise-tolerant features from audio. The 

features are more complex than in the studies by [8,10], but 

also summarize longer segments of audio than in that other 

work.  DDA is based on a variant of Linear Discriminant 

Analysis (LDA) called Oriented Principal Components 

Analysis (OPCA). OPCA assumes that distorted versions of 

the training samples are available.  OPCA selects a set of 

directions for modeling the subspace that maximizes the 

signal variance while minimizing the noise power.  In 

contrast, Principal Components Analysis finds a set of 

orthogonal vectors that maximize the signal variance.  OPCA 

yields a set of potentially non-orthogonal vectors that account 

for noise statistics [1].  Their experiments have found that the 

fingerprints are resistant to problems with alignment and 

types of noise not found in the training set. 

3   System Overview 

Our system builds on the insights from [10]: computer vision 

techniques can be a powerful method for analyzing audio 

data. However, instead of a learning approach, we examine 

the applicability of a wavelet-based approach developed by 

[9] for efficiently performing image queries in large 

databases.  To make the algorithm scale, we employ the 

hashing work from the field of large-scale data-stream 

processing.  The sub-fingerprints that we develop will be 

more comprehensive than used in either Haitsma or Ke's work 

since they will represent a longer time period, in a manner 

closer to the work presented in [1].  Each component of our 

system will be described in detail in this section. 

We start our processing by converting the audio input into a 

spectrogram.  We create our spectrograms using parameter 

settings that have been found to work well in previous audio-

fingerprinting studies [8].  As a result, we use slices that are 

371 ms long, taken every 11.6 ms, reduced to 32 

logarithmically spaced frequency bins between 318 Hz and 2 

kHz.  One important consequence of the slice length/spacing 

combination of parameters (371ms slices each 11.6 ms) is that 

the spectrogram varies slowly in time, providing matching 

robustness to position uncertainty (in time).  The use of 

logarithmical spacing in frequency was selected based for 

simplicity, since the detailed band-edge locations are unlikely 

to have a strong effect under such coarse sampling (only 32 

samples across frequency).  We then extract spectral images, 

11.6*w ms long, each sampling offset apart.   The sampling 

offsets that we use are constant in the database-creation 

process (s sec separation) but are non-uniform in the probe-

sampling process.  We discuss this choice later in this section.  

Extracting known-length spectral images from the 

spectrograms allows us to create sub-fingerprints that include 

some temporal structure without being unduly susceptible to 

gradual changes in timing.  At this point in the processing, we 

treat the spectral images as if they were components in an 

image-query system.  Rather than directly comparing the 

"pixels" of the image, we will use a representation based on 

wavelets. 

For each of the spectral images that we create, we extract the 

top wavelets according to their magnitude.  Wavelets are a 

mathematical tool for hierarchically decomposing functions.  

They allow a function to be described by its overall shape, 

plus successively increasing details. Like Fourier 

decompositions, wavelets provide some degree of separation 

according to spatial frequency.  Wavelets have the additional 

property of localized support, with each wavelet’s support 

covering a consistent number of frequency cycles of that 

wavelet’s frequency band.  A good description of wavelets 

can be found in [15].  The motivation for using wavelets in 

audio-retrieval is based on their successful use in creating an 

image-retrieval system [9].  In the Jacobs system [9], rather 

than comparing images directly in the pixel space, they first 

decomposed the image through the use of multi-resolution 

Haar-wavelets. For each image, a wavelet signature of the 

image is computed; the wavelet signature is a truncated, 

quantized version of the wavelet decomposition of the image.   

Their system supported query images that were hand-drawn 

or low-quality sketches of the image to be retrieved.   The 

results were better than those achieved through simple 

histogram or pixel differences.   



 

 

To describe an m×n image with wavelets, m×n wavelets are 

returned: there is no compression.  By itself, the wavelet-

image is not resistant to noise or audio degradations; there 

will be changes to these values due to small changes in the 

sound (i.e. a small bit of noise, echo, other sounds in the 

background, being played over a cell phone, etc).  Instead of 

using the entire set of wavelets, we only keep the ones that 

most characterize the song.  We simply select the t top 

wavelets (by magnitude), where t << m×n. When we look at 

the wavelets for successive images for two songs, we see 

easily identifiable patterns both in the wavelet space and even 

more clearly when the top-t wavelets are kept (see Figure 1).  

One of the interesting findings in the Jacobs study was that 

they did not need to retain the coefficients for the top 

wavelets.  Instead, they simply needed to retain the sign of the 

wavelet.  This representation is used in this study, as memory 

usage must be carefully monitored.  The most important 

feature of this bit vector is that it is sparse.  Sparsity makes it 

amenable to further dimensionality reduction through the use 

of Min-Hash [18]. 

The final step of the sub-fingerprint creation process is to take 

the sparse wavelet-vector described above and create a 

compact representation of it.  We explore the use of Min-

Hash to compute sub-fingerprints for these sparse bit vectors.  

A fundamental requirement of the sub-fingerprints is that sub-

fingerprint v1 and sub-fingerprint v2 are highly similar if and 

only if wavelet signature (v1) and wavelet signature (v2) are 

highly similar.   

For the purposes of this discussion, given two vectors v1 and 

v2, we will refer to match types as being of four types a, b, c, 

and d, as shown in Table 1, depending on the corresponding 

bits in the vectors. Given these types of matches/mismatches, 

we note that for sparse vectors, most of the bit positions will 

be of type d.  We will define the similarity of two vectors to 

be the relative number of rows that are of type a: i.e., Sim(v1, 

v2) = a/(a + b + c).  

An immediate approach to this problem is to simply randomly 

select a set of bit positions, and use them as the signature; 

however, that will not work.  Because the vectors are sparse, 

the resulting signatures will likely be similar because they 

will mostly be composed of 0's; however, that will not give a 

true indication of similarity, because rows of type a are of 

most interest. 

The Min-Hash technique works as follows.  Permute the bit 

positions to some random (but known) re-ordering.  Then, for 

that permutation, measure for each vector in which position 

the first '1' occurs.   It is important to note that the probability 

that first_one_occurrence(v1) = first_one_occurrence(v2) is 

the same as the probability a/(a + b + c): the hash values 

agree if the first position with a 1 in either bit vector is of type 

a, and they disagree if the first such position is of type b or c.  

Note this probability is the same as Sim(v1, v2) – which is 

what we need.    

We can repeat the above procedure multiple times, each time 

 

 

Figure 1. The representation for 

three songs – 5 consecutive frames 

shown for each, skipping 0.2 

seconds.  For each song, the top row 

is the original spectrogram image, 

the second row is the wavelet 

magnitudes, the third row shows the 

top-200 (t=200) wavelets.   Note that 

the top wavelets have a distinctive 

pattern for each of the three songs.  

(For each song, the top 2 rows in the 

figure have been extensively visually 

enhanced to be visible when printed 

on paper). 

 

The Dave Matthews Band – Lie in Our Graves (album Crash) 

Enya – Shepherd Moons (album Shepherd Moons) 

Guns and Roses – Out Ta Get Me (album Appetite for Destruction) 

 

Table 1. Types of Match/Mismatch between  

single bits  of two binary vectors 

 
Type Vector 1 Vector 2 

a 1 1 

b 1 0 

c 0 1 

d 0 0 

 



 

 

with a new permutation of bit positions.  If we repeat the 

process p times, with p different permutations, we get p 

projections of the bit vector.  These p values are the signature 

for the bit vector.  We can compare the similarity of the bit 

vectors by looking at the exact matches in the signatures of 

length p; for a large enough p, it will be very close to the 

similarity of the original vectors.  In our system, we do not 

keep the intermediate bit representation described above.  

Instead, we store the Min-Hash computed signature; this is 

the final sub-fingerprint of the audio-image.  A more 

thorough description of the process is given in [18].   Methods 

to make the matching process efficient, based on Locality-

Sensitive-Hashing (LSH), are presented with the description 

of the retrieval process.    

In this study, Min-Hash reduces the size of the signatures 

from the intermediate wavelet representation described in this 

section to a compact representation of p values.  There are 

numerous other techniques that are commonly used for 

dimensionality reduction – among them techniques such as 

Principal Components Analysis (PCA) and Linear 

Discriminant Analysis (LDA).  We chose to use Min-Hash 

due to a chain of reasons.  We require discriminative power 

across our top wavelet signatures, not descriptive power.  

This requirement means that PCA may not be the best 

representation and instead has traditionally been handled by 

LDA-based methods [1].  Since our top-wavelet signatures 

are already a sparse-vector representation, we decided to 

explore the use of techniques that were explicitly designed to 

handle probabilistic matching and discrimination across 

sparse vectors.  Min-Hash is such a method and has been used 

extensively in data-stream processing.  By employing this 

method, we avoid the continuous-valued modeling that would 

be required for LDA.  This LDA conversion to continuous-

valued modeling would require two transformations in our 

processing stream: from the top-wavelet signature bit stream 

to continuous values (for modeling) and then back to 

discretized values (for efficient nearest neighbor look up).   

To this point, we have reduced the amount of information 

from each spectrogram through three steps.  First, we kept 

only the top wavelets of the spectral images, associated with 

the spectrogram.  Second, we reduced the top wavelets to 

only two bits. Third, we used the Min-Hash procedure to 

explicitly reduce the resulting bit-vector to p values, which 

became the final sub-fingerprint.  

After these steps, each spectral image (or equivalent-length 

audio segment) is represented by a series of p 8-bit integers, 

the sub-fingerprint.  Even with this compression, efficiently 

finding near-neighbors in a p dimensional space is not a 

trivial task (when p > 50); naive comparisons are not 

practical.  Instead, we use a technique, termed Locality-

Sensitive Hashing (LSH) [5].  It is not only efficient in the 

number of comparisons that are required (a small fraction of 

the dataset will be examined), but also provides noise-

robustness properties. 

In contrast to more standard hashing, LSH performs a series 

of hashes, each of which examines only a portion of the sub-

fingerprint.  The goal is to partition the feature vectors into l 

subvectors and to hash each point into l separate hash tables, 

each hash table using one of the subvectors as input to the 

hash function. Candidate neighbors can be efficiently 

retrieved by partitioning the probe feature vector and 

collecting the entries in the corresponding hash bins.  The 

final list of potential neighbors can be created by vote 

counting, with each hash casting votes for the entries of its 

indexed bin, and retaining the candidates that receive some 

minimum number of votes, v. If v = 1, this takes the union of 

the candidate lists. If v= l, this takes the intersection.   

3.1 Retrieval  

The overall retrieval process is shown graphically in Figure 2.  

The first difference in the retrieval process, in comparison to 

the database-generation process, is that the song is divided 

into randomly overlapping segments rather than uniformly 

overlapping segments. Randomly selecting the stride amount 

is important to avoid problems of unlucky alignments; if the 

sampling of the probe is kept constant, it may be possible to 

repeatedly find samples that have uniformly large offsets 

from the sampling used to create the database.  

After the audio snippet is created, its signature is computed in 

exactly the same manner as described in the database 

generation process (Steps 2-5).  The next steps 6-8 describe 

an efficient mechanism for finding matches in the database 

and measuring their distances from the query, and are the 

subject of the next section.    

We described the basic characteristics of LSH in the previous 

subsection. LSH also supports flexible constraints on which 

candidates from the individual component hash tables will be 

examined further, as part of the final list of candidate 

matches.  This flexibility is achieved by adding a requirement 

for a minimum number of component hash-table votes.  

Under this development, each component hash table votes for 

the sub-fingerprints that were retrieved using its p/l-bytes.  

Then, only those sub-fingerprints with a minimum of v 

component votes would be retained.  For example, by setting 

v=1, a candidate must only match in one of the subregions in 

order to be included in the final candidate list.  At the 

opposite extreme, by setting v=l, the candidate must match on 

all subregions and the LSH operates identically (although 

inefficiently) to a standard hash table.  

The fingerprints that have at least v votes are then compared 

with the query sub-fingerprint.  Because each byte of the sub-

fingerprint is a Min-Hash signature, we simply look at the 

number of bytes (out of p) that match exactly.  The sub-

fingerprint with the maximum of this score is the best match 

on that spectral image.   

 



 

 

 

1. Given the audio spectra of a song, extract spectral images of 11.6*w ms duration, with random spacing averaging d-ms 
apart. 

    For each spectral image:  

2.  Compute the wavelets on the spectral image 

3.  Extract the top-t wavelets.  

4.  Create a binary representation of the top-t wavelets.  

5.              Use min-hash to create a sub-fingerprint of the top-t wavelets (note that the same permutations used in the 
database-creation portion are used here)  

6.              Using Locality Sensitive Hashing, with b bins, l hash tables, find the sub-fingerprint segments that are close 
matches. 

7.  Discard the sub-fingerprints with less than v matches 

8.              Compute the Hamming distance from the remaining candidate sub-fingerprints to the query sub-fingerprint. 

9.   Use Dynamic Programming to combine the matches across time. 

 

Figure 2.  Overall architecture for the retrieval process.  Step 9 not shown in the diagram. 
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3.1.1 Temporal Ordering Constraints 

Up to this point, we have discussed matching sub-fingerprints 

from the probe into the database.  In this section, we describe 

the methods that we have explored to accumulate evidence 

across sub-fingerprints over the duration of the probe snippet. 

The simplest way to combine evidence is a simple voting 

scheme that does not take into account temporal information.  

With this approach, we keep a similarity counter for each 

song.  At the start of a new probe snippet, all of these 

counters are zero.  Then, at each probe sub-fingerprint, for 

each candidate that passed the required hash-voting threshold, 

we increment the corresponding song counter by the 

Hamming similarity between the probe and candidate sub-

fingerprints.  The advantage of this approach is its simplicity 

and low memory requirements. The disadvantage is that 

evidence for a song accumulates without regard to temporal 

ordering of the sub-fingerprint matches.  Pairs of sub-

fingerprints p(t) / p(t+∆t) within the probe are rewarded 

equally for (respectively) matching song sub-fingerprints s(t) 

/ s(t–∆t) as they are for matching s(t) / s(t+∆t): there is no 

penalty for time reversal.  Similarly, for matching s(t) / s(t-

+10∆t): there is no penalty for changing tempo.  Even with 

these limitations, this simple voting approach is worth 

considering for retrieval tasks with overlapping temporal 

sampling in the database and with dense temporal sampling in 

the probe snippet. 

We also explored using dynamic-time warping to accumulate 

evidence across time within a database song.  Dynamic-time 

warping is a form of dynamic programming for imposing 

“tempo” constraints in mapping one sequence onto another 

[11].  Given a starting correspondence between the two 

sequences, the most probable path that satisfies the tempo 

constraints is efficiently found.  We use both global-slope 

constraints (over the length of the match, there can be only 

10% change in tempo from the probe to the candidate match) 

and local-slope constraints (no single probe can match more 

than one song location within a single track and no local-time 

inversions are allowed).   

This leaves unaddressed the question of selecting the starting 

correspondence.  Each probe sub-fingerprint can propose 

multiple matches in any given song and any of these can be 

the correct starting correspondence.  In addition, since we 

allow matches to be missing, the simple time-synchronized 

dynamic-program possible-state list grows over time.  To 

avoid uncontrolled growth in the use of memory (and 

computation) to track all of these possibilities, we impose two 

limits.  First, we only allow each sub-fingerprint to propose 

approximately twenty potential matches for itself, across the 

full data base of songs.  This limit is only approximate since, 

if there are a set of identical-quality (according to Hamming 

distance) candidate matches that include one or more of the 

top 20 matches, then all of these ties are allowed as 

candidates.  In the opposite direction, if fewer than 20 

matches passed our previous criteria for sub-fingerprint 

matches, then only that smaller set is considered.  Secondly, 

within each song, we use A* pruning on list of current 

hypothesized time sequences. 

Doing A* pruning on unequal length partial matches requires 

a quality-of-match measure that has the length of that partial 

match largely normalized out.  For example, we do not want 

to prune out a new match track that has only a few but strong 

matches, due to the presence of a uniformly mediocre match 

that extends over large number of sub-fingerprint.  As a 

result, we selected a figure-of-merit that is the similarity of 

the best sub-fingerprint match in the sequence plus the 

average across all other sub-fingerprint matches within the 

sequence.  This reduces to the sub-fingerprint match score in 

the case of a single-length match track and to twice that value 

if all the sub-fingerprints are equal strength, but it otherwise 

does not grow with track length changes.  Our figure-of-merit 

also includes a small penalty for global tempo changes 

(within the allowed ±10%).  In summary, the score for each 

song is: 

• For accumulation without temporal constraints: The sum 

of the Hamming similarity of the candidate sub-

fingerprints within that song in the database. 

• For accumulation with temporal constraints: The score of 

the best temporal track within each song  (as described 

above), where sub-fingerprint matches within each 

temporal track must: 

- not introduce local time inversions (no backtracking 

within the database-song), 

- not match a single probe sub-fingerprint to more 

than one database-song sub-fingerprint (the opposite 

is allowed, due to unequal sampling rates),  

- not include probe-database sub-fingerprint pairs 

that, when measured along the database-song axis, lie 

outside more than a database sampling stride outside 

of the ±10% tempo cone as defined by the starting 

probe-database sub-fingerprint pair. 

 

4   Experiments 

One of the intrinsic difficulties in designing a large-scale 

system is conducting a thorough exploration of the parameter 

settings.  In this section, we report the results of extensive 

testing of parameter sets. Over 50,400 different parameter 

combinations were tried to ensure that we select the best 

settings and understand the tradeoffs with each parameter. 

To explore this large parameter space, we used a 10,000-song 

database, with an average song duration of 3.5 minutes.  

Since our goal at this point is to understand the general 

system performance, we did not use heuristics such as 

unequal protection over time (i.e., protecting song beginnings 

and choruses more heavily) to reduce the amount of memory 

usage or computation.  

We used 1000 independent probe snippets into this song data 

base.  Each of these probes included one of the following 

distortions, with each distortion getting equal representation:  

 



 

 

1. Time-offset only: This uses a clean signal as the probe 

but with an unknown starting time offset, relative to the 

database sampling.  This unknown sampling offset is also 

included with all the other distortions, below. 

2. Echo: The added echo retains 90% of the original signal 

level and arrives 100 ms after the original sound.   

3. Equalization: This process effectively passes the signal 

through an equalizer with the settings of [8], which 

double the volume on some frequency bands at the same 

time as halving the volume on others. 

4. MP3-32 Kbps: We encode and decode the test probes at 

32-kbps using constant bit-rate MPEG2 layer-3 audio.   

5. GSM-Adaptive Multi-Rate (AMR): We encode and 

decode the test probes to 4.75-kbps-mode GSM AMR 

audio. 

6-7. Noise: This adds structured noise (Enya’s Watermark I or 

To Die For’s Veil of Tears Epilogue) to the probe at a 

fixed (probe-content-independent) RMS-volume. 

8-9. Linear Speed-up Modification: We simply change the 

playback speed of the sound, speeding it up, or slowing it 

down  by 2%.   

10-11. Time-Scale Modification: This increases/decreases 

the tempo by 10% without changing the pitch.   

In Section 4.1, we report retrieval results on a forced-choice 

task (this assumes that the song exists somewhere in the 

database).  The results reflect the percentage of times we 

selected the correct song from the database, using the 

distorted probe snippet.  On this task, since we are operating 

against 10,000 equally probable songs, random chance is 

0.01% correct. 

4.1 Empirical Results 

With over 50,400 parameter settings, and three interesting 

attributes (retrieval accuracy, memory usage, computational 

load), there are numerous manners in which to report the 

results.    In the following 2 graphs, we present the results on 

the recognition task for 2 different retrieval-accuracy settings.   

The results near the best operating curve are shown in Figure 

3.  This best operating curve is the set of points which, for the 

selected retrieval accuracy, requires the least memory for its 

computational-load operating point and uses the least 

computation for its memory-usage operating point.  In the 2 

graphs shown in the figure, we restricted the computation and 

memory range to be close to the best operating curve (for the 

selected accuracy) but left all experimental results that fell 

within the shown range of values, even if they were not on 

that operating curve.  

There are many interesting points to note about the results.  

First, corresponding to the graph showing the best accuracy 

(Figure 3, top) only 122 out of the 50,400 experiments had 

accuracies of 97.5% or above.  As many as 320 additional 

parameter combinations might have achieved accuracies in 

this range but were terminated early, due the impractically 

large amount of computation that they were consuming (more 

than 3 million comparisons per probe snippet).   Of the 122 

points that ran to completion, 85% used 20 or 25 hashes (with 

the remaining 15% split between 15 and 10 hashes).  There 

also was an unequal distribution across the numbers of 

retained top wavelets: 400 and 200 top wavelets accounted 

for nearly 2/3
rds
 of the run-to-completion points, with the 

remaining 1/3 split across 50, 100 and 800 top wavelets. 

Second, note that the y-axis (showing the amount of 

computation) on all the graphs is logarithmic; therefore, the 

amount of computation for the 4 boundary points marked on 

Figure 3(top) varies significantly.   Computation is measured 

by the number the number of full-compares required.   A full-

compare is when the p constituents of the query sub-

fingerprint must be compared with the constituents of a 

database candidate.  Note that this number is then multiplied 

by the length of the probe snippet required by the system, the 

y parameter.  The final number, shown on the graph, is the 

total number of full compares required to recognize a snippet.    

Third, the best retrieval accuracy on the best operating curve 

(Figure 3, top) achieves 97.9% accuracy, while the best 

retrieval accuracy over all the parameter setting was only 

0.2% higher on this probe set.  That 0.2% increase in 

accuracy required twice the memory and nearly 2000x the 

computation; therefore, was not used in our final system.  The 

operating point which yielded 97.9% accuracy was used 

(from this point on, we shall call the system with these 

parameters Waveprint-1); the parameters to obtain this 

accuracy were:    

• 5% of the wavelets (t=200) were kept;  l=20 hashes, 

s=0.9 seconds stride in DB creation; y=60 second 

queries; this is expected as the longer the query is, the 

more information there is for accurate retrieval; d=46 ms 

stride in probe; this is a small stride when querying; the 

smaller the stride, the more accuracy is expected;  7% of 

the hashes (v=2) had to vote for a snippet in order for it to 

be considered as a potential match.; T=Dynamic 

programming for temporal constraints; again, this is 

expected as it is another source of information. 

Fourth, the next best results on the best operating curve 

(97.8%) took an order of magnitude more computation time.  

This was due to two factors.  First, the number of hashes 

increase, and second, the sampling stride for the query was 

reduced; thereby increasing the number of comparisons that 

must be done. 

Fifth, another interesting point is that we can reduce the 

computation by an order of magnitude with little drop in 

accuracy.  If we look on the operating curve (Figure 3, top), 

the bottom labeled point achieves close performance results 

(97.5%) using 1/13
th
 of the computation and < 20% more 

memory.  The following parameters were used for this point 

(from this point on, we shall call the system with these 

parameters Waveprint-2): 

 

• l=25 hashes; this increase in the number of hashes 

accounts for the increased memory; 17% of the hashes 

(v=5) had to vote for a snippet; this increase in the voting 

accounts for the reduced computation; all other 

parameters unchanged. 



 

 

If we now look at the graph showing 50%-or-better 

performance (Figure 3, bottom), we see that the parameters 

have changed substantially and that the computation and 

memory requirements have been reduced dramatically.  For 

example, looking at the case with 68.6% accuracy, note the 

computation has been reduced by almost 3 orders of 

magnitude from our best case, and memory reduced by 3x.  

Surprisingly, the number of hash tables that define the best 

operating curve for 50% accuracy use 25 hashes, so the 

memory reduction is not achieved through reducing the 

number of hash tables.  Instead, this memory reduction was 

achieved by increasing the database stride (s) from 0.9 

seconds to 7.4 seconds – thereby reducing the number of 

stored sub-fingerprints.  In addition, the computation was 

reduced by having a large probe stride (d=186 ms) and 

keeping the larger voting threshold (17%; v = 5 votes). 

Looking across both graphs, the number of retained wavelets 

seems to be consistently higher on the lower-accuracy best 

operating curves than what was seen for the 97.5%-accuracy 

best operating curve.  On the 97.5%-accuracy curve, most of 

the best operating points retained 5% (200) of the wavelets.  

When examining similar curves at 80% and 90% accuracy 

levels (not shown here), all the best operating points keep 

20% (800) of the wavelets, as do many of the best operating 

points on the 50% accuracy curves.   The number of wavelets 

to keep is not a simple parameter to set and is dependent on 

the settings of many other parameters.  If too many wavelets 

are kept, the sparsity of the binary vector is reduced; thereby 

rendering techniques like Min-Hash ineffective.  If too few 

Figure 3. Results for retrieval accuracy 

settings > 97% (top) and > 50% 

(bottom).  The best-operating cases are 

labelled.   Two parameters are selected 

for further study:  The first is at 97.9% 

accuracy with settings (t=200 retained 

wavelets, l=20 hashes, s=0.9-sec DB 

stride, y=60-sec queries, d=46-ms 

probe stride, v=7% voting, and 

temporal constraints); this is called 

Waveprint-1.  The second has 97.5% 

accuracy with settings (t=200 retained 

wavelets, l=25 hashes, s=0.9-sec DB 

stride, y=60-sec queries, d=46-ms 

probe stride, v=17% voting, and 

temporal constraints); this is called 

Waveprint-2. 
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wavelets are kept, the signature may not contain enough 

information about the underlying signal.    

4.2  Comparisons 

In this section, we analyze our system’s performance.  The 

retrieval performance of Waveprint-1 and Waveprint-2, for a 

new test set, across three different probe lengths, is shown in 

Table 2.   

For performance comparison, we use the extension to [8] that 

was developed by [10].
1
   In addition to the exact system 

developed by Ke, we also tried a modification that simply 

changes the amplitude normalization to a smoothly varying 

normalization that is computed on a sliding window of the 

surrounding 5 seconds of audio.  Unfortunately, their system 

was not designed to handle large timing variations, so we did 

not include time-based degradations in the next set of tests.
2
  

Instead, we created a new test set that replaced linear-time-

scale modification and time-scale modification with other 

degradations.  The results of all the systems on this modified-

test set are given in Table 3.   

In terms of memory, we can express our usage in terms of the 

parameters of the system.   The number of songs stored in our 

database is N, the average length of a song is M.  

 

Memory Usage =   

   O (l * N * M / s )   +   O (l  * b)    +    O ((p+α) * N * M / s)   

+ Temporal_Constraint_Overhead 

 

Here, O (l * N * M / s) is the number of pointers stored across 

all hash tables; these point to the actual sub-fingerprints.   (M 

/ s) is the number of sub-fingerprints that are created for each 

song.  N is the number of songs, and l is the number of hash 

tables used.   In practice, since these are pointers, they are 

represented with 4 bytes.  O (l * b):  we used very simple 

hash tables that were implemented as arrays; two elements are 

stored in each bin of the array, a pointer to its contents and a 

count of how many sub-fingerprints are stored in the bin.   In 

practice, since these are a pointer and an integer, they are 

represented as 8 bytes (total). 

                                                           
1
 Ke’s system can be downloaded from: 

(http://www.cs.cmu.edu/~yke/musicretrieval/).    

2
 Since an extension of Ke’s Bernoulli-Markov temporal 

model to include large timing variations should be possible, 

we omitted the pessimistic performance numbers that we 

observed of the [10] default system. 

O((p+α)  * N * M /s): for every spectral image examined, we 

need to keep a sub-fingerprint.  The sub-fingerprint is p 

elements long (the number of permutations used in the min-

hash signature).   In practice, each value is between 0-255, so 

it can be represented as 1 byte.   α is bookkeeping storage to 

relate each fingerprint to its position into its song. 

Temporal_Constraint_Overhead:   Although we will not 

explain this in great detail, there is a memory cost when using 

temporal constraints with dynamic programming.  It is minor 

in comparison to the rest of the memory used elsewhere. 

 

To make this concrete, we can estimate the memory required 

for the tests performed for a memory-optimized system (note 

that there are many modifications that can be made in the 

coding of the procedures which yield time-memory tradeoffs, 

but they are beyond the scope of this paper.  Some were used 

in the experiments described in Figure 3 – which rendered it 

not memory optimal).  

 

For Waveprint-1, we used l = 20, p = 100, s = .928 seconds, 

b=100,000 bins.   We assumed a database of 10,000 songs, of 

average length 3.5 minutes. We estimated the 

Temporal_Constraint_Overhead at 10 megabytes.  This 

yields a total of approximately 0.45x10
9 
bytes of memory.  

Therefore, on a standard 2GB machine, we can store 

approximately 47,000 songs without touching disk for 

retrieval.  

 

Doing the same analysis for Waveprint-2 (l=25 instead of 20), 

and keeping the Temporal_Constraint_Overhead at 10 

megabytes, we get 0.50x10
9 
bytes of memory.   Therefore, on 

a standard 2GB machine, we can store approximately 43,000 

songs without touching disk for retrieval.  

 

Next, we describe the speed of our system.  The speed 

achievable is dependent on the accuracy desired:  The longer 

the sample snippet, the more reliable the recognition is but the 

longer the processing takes.  The timing results are as follows 

(measured by how much faster than real-time):  10-sec probe, 

286×faster; 30 seconds, 94×faster; 60 seconds, 47×faster.
 3
  

These timing results do not include the time required to create 

the spectrogram.  Further, it should be possible to speed up 

the most computationally expensive portion of the process 

(computing and sorting the wavelets, which account for 

approximately 90% of the cost) by a factor of ~16-32x.  This 

                                                           
3
 The machine tests were performed on a 3.4 GHz Pentium-4 

CPU, with 3 GB memory and 1 MB cache.  

Table 3. Performance Comparison – Test Set without 

Time-Scale- and Speed-Modification Degradation  

System 10 Sec 30 Sec 60 sec 

Ke - Original 80.1 83.0 85.0 

Ke - Modified 84.8 88.1 90.0 

Waveprint-1 93.8 96.4 96.9 

Waveprint-2 90.8 96.4 96.9 

 

 

Table 2. Performance Comparison – Full Test Set 

System 10 Sec 30 Sec 60 sec 

Waveprint-1 94.3 96.5 97.9 

Waveprint-2 89.5  96.2 97.5 

 



 

 

can be done by reusing partial results across successive sub-

fingerprints, since much of the computation is repeated across 

the time-windows examined. 

 

5   Conclusions & Future Work 

In this work, we have presented the Waveprint audio 

identification system.  The system builds on the insight of 

[10]: the task of audio recognition can be effectively 

addressed through computer-vision techniques.  In this work, 

we extended the computer-vision work presented in [9] for 

retrieving near-duplicate images from a large corpus of image 

data to the task of audio retrieval.  The accuracy of the 

resulting system remains high even when tested on severely 

degraded probe samples.    

Immediate next steps include scaling the database.  We have 

seen preliminary promising results, both in terms of accuracy 

and speed, especially in the Waveprint-2 setting.   Other 

future work includes exploring applications beyond music 

matching, such as using the system for matching television 

broadcasts.    Finally, automatic methods for ascertaining and 

using the stability and distribution of points within the hash-

bins and the top-wavelets are being explored. 
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