

Content Fingerprinting Using Wavelets

Shumeet Baluja, Michele Covell

Google, Inc.

1600 Amphitheatre Parkway

Mountain View, CA. 94043

{shumeet, covell}@google.com

Keywords: Audio Recognition, Fingerprinting, Wavelets

Abstract

In this paper, we introduce Waveprint, a novel method for

audio identification. Waveprint uses a combination of

computer-vision techniques and large-scale-data-stream

processing algorithms to create compact fingerprints of audio

data that can be efficiently matched. The resulting system has

excellent identification capabilities for small snippets of audio

that have been degraded in a variety of manners, including

competing noise, poor recording quality, and cell-phone

playback. We explicitly measure the tradeoffs between

performance, memory usage, and computation through

extensive experimentation.

1 Introduction

Audio fingerprinting provides the ability to link short,

unlabeled, snippets of audio content to corresponding data

about that content. There are an immense number of

applications for audio fingerprinting. In content-

management systems, it can help follow the use of music and

other audio material. This ability is increasingly important as

more content is repurposed and recombined [6][13]. It

provides the ability to automatically identify and cross-link

background audio, such as songs. Tagging of songs with the

performing artist’s name, album or other metadata can be

automatically accomplished [7][14].

Audio fingerprinting also enables numerous applications in

the realm of enhanced television, from interactivity without

imposing extraneous hardware constraints [4] to automatic

advertisement detection and replacement [2]. Unlike many

competing technologies, the goal of audio fingerprinting is to

perform the recognition without the use of any extraneous

information such as watermarks or pre/post transmission of

inaudible (to the human ear) data.

There are a number of issues that make fingerprinting a

challenging task. The simplest approaches, directly

comparing the audio, or spectrograms of the audio, will not

work. The query and stored version of a song may be aurally

similar while having distinct bit representations. For

example, they may be recorded at different quality settings,

compression schemes, equalization settings, reference codecs,

etc.; any of these factors would render naïve comparisons

ineffective.

Numerous difficulties exist when moving to techniques that

do not require exact bit-level matches. First, in many

applications, the system must be able to function with only

short snippets of audio content because often a full song will

not be available. Second, since often only song fragments are

given, in the vast majority of realistic scenarios, there is no

fine or even coarse alignment of the audio content; it may

occur anywhere within a song. Other difficulties arise in real-

world usage. Often, songs are 'sampled' in other songs,

thereby making the matches more ambiguous. When

identifying songs played on a radio, a new set of difficulties

arise because radio stations may change the speed of a song

[12] to fit their programming requirements. Finally, there are

difficulties introduced through the numerous forms of

playback available to the end consumer. Music that is played

through a cell phone, computer speakers, or high-end audio

equipment will have very different audio characteristics that

must be taken into account.

2 Previous Work

Many audio-fingerprinting techniques use low-level features

that attempt to compactly describe the audio signal without

assigning higher-level meaning to the features. This approach

is used in our study. Three of the most widely referenced

approaches in this class are described here. One of the most

widely used systems [8], uses overlapping windows of mono-

audio from which to extract interesting features. Overlapping

windows must be used to maintain time-shift invariance for

the cases in which exact time alignment is not known. The

spectral representation of the audio can be constructed in a

variety of manners (by measuring the energy of the Mel-

Frequency Cepstrum Coefficients (MFCCs) or Bark

Frequency Cepstrum Coefficients (BFCCs)), BFCCs are used

in their study. In their study, 33 BFCC bands are used that lie

in the 300-2000 Hz range. Every 11.6 milliseconds, a sub-

fingerprint is generated that covers a frame of 370

milliseconds. The large overlap in successive frames ensures

that the sub-fingerprints vary slowly over time. The sub-

fingerprints are a vector of 32-bits that indicate whether the

difference in successive BFCC bands increases or decreases

in consecutive frames. These sub-fingerprints are largely

insensitive to small changes in the audio signal since no

actual difference values are kept; instead, only the signs over

consecutive frames compose the sub-fingerprint. Given this

fingerprint (the sequence of sub-fingerprints), comparisons

are simple; the difference between the frames is simply the

Hamming distance of the fingerprints. The sub-fingerprints

used in their study are compact and fast to compute.

A recent extension to the above work was presented in [10].

Ke used the same basic architecture of [8], but introduced a

learning approach into the feature-selection process. An

important insight provided by [10] is that the 1-D audio signal

can be processed as an image when viewed in a 2-D time-

frequency representation. The learning approach, based on

AdaBoost, is often used in computer-vision applications such

as face detection [16]. They presented a version of AdaBoost

that learns features that integrate the energy in selected

frequencies over time. The duration and frequencies are

selected via the AdaBoost algorithm; they are similar to the

"boxlet" features used in [16] (average intensities of

rectangular sub-regions of the spectrogram image). The basis

of selection for the features is the discriminative power of the

rectangular region in being able to differentiate between when

2 frames are the same (when one is degraded by noise) and

when they are different. Thirty-two boxlet features are

selected, each yielding a binary value. These 32 bits are then

used in an analogous procedure to the 32-bit features found

by [8]. For lookup of new queries, their system processes the

audio-image (similarly spaced to [8]), to create the 32-bit sub-

fingerprint using the learned features. Then, all sub-

fingerprints within a Hamming distance of 2 bits are searched

for in the database. A measure of temporal coherence is

provided by a simple transition model.

An alternate approach is explored in [1]; their work

introduces Distortion Discriminant Analysis (DDA), a

method to extract noise-tolerant features from audio. The

features are more complex than in the studies by [8,10], but

also summarize longer segments of audio than in that other

work. DDA is based on a variant of Linear Discriminant

Analysis (LDA) called Oriented Principal Components

Analysis (OPCA). OPCA assumes that distorted versions of

the training samples are available. OPCA selects a set of

directions for modeling the subspace that maximizes the

signal variance while minimizing the noise power. In

contrast, Principal Components Analysis finds a set of

orthogonal vectors that maximize the signal variance. OPCA

yields a set of potentially non-orthogonal vectors that account

for noise statistics [1]. Their experiments have found that the

fingerprints are resistant to problems with alignment and

types of noise not found in the training set.

3 System Overview

Our system builds on the insights from [10]: computer vision

techniques can be a powerful method for analyzing audio

data. However, instead of a learning approach, we examine

the applicability of a wavelet-based approach developed by

[9] for efficiently performing image queries in large

databases. To make the algorithm scale, we employ the

hashing work from the field of large-scale data-stream

processing. The sub-fingerprints that we develop will be

more comprehensive than used in either Haitsma or Ke's work

since they will represent a longer time period, in a manner

closer to the work presented in [1]. Each component of our

system will be described in detail in this section.

We start our processing by converting the audio input into a

spectrogram. We create our spectrograms using parameter

settings that have been found to work well in previous audio-

fingerprinting studies [8]. As a result, we use slices that are

371 ms long, taken every 11.6 ms, reduced to 32

logarithmically spaced frequency bins between 318 Hz and 2

kHz. One important consequence of the slice length/spacing

combination of parameters (371ms slices each 11.6 ms) is that

the spectrogram varies slowly in time, providing matching

robustness to position uncertainty (in time). The use of

logarithmical spacing in frequency was selected based for

simplicity, since the detailed band-edge locations are unlikely

to have a strong effect under such coarse sampling (only 32

samples across frequency). We then extract spectral images,

11.6*w ms long, each sampling offset apart. The sampling

offsets that we use are constant in the database-creation

process (s sec separation) but are non-uniform in the probe-

sampling process. We discuss this choice later in this section.

Extracting known-length spectral images from the

spectrograms allows us to create sub-fingerprints that include

some temporal structure without being unduly susceptible to

gradual changes in timing. At this point in the processing, we

treat the spectral images as if they were components in an

image-query system. Rather than directly comparing the

"pixels" of the image, we will use a representation based on

wavelets.

For each of the spectral images that we create, we extract the

top wavelets according to their magnitude. Wavelets are a

mathematical tool for hierarchically decomposing functions.

They allow a function to be described by its overall shape,

plus successively increasing details. Like Fourier

decompositions, wavelets provide some degree of separation

according to spatial frequency. Wavelets have the additional

property of localized support, with each wavelet’s support

covering a consistent number of frequency cycles of that

wavelet’s frequency band. A good description of wavelets

can be found in [15]. The motivation for using wavelets in

audio-retrieval is based on their successful use in creating an

image-retrieval system [9]. In the Jacobs system [9], rather

than comparing images directly in the pixel space, they first

decomposed the image through the use of multi-resolution

Haar-wavelets. For each image, a wavelet signature of the

image is computed; the wavelet signature is a truncated,

quantized version of the wavelet decomposition of the image.

Their system supported query images that were hand-drawn

or low-quality sketches of the image to be retrieved. The

results were better than those achieved through simple

histogram or pixel differences.

To describe an m×n image with wavelets, m×n wavelets are

returned: there is no compression. By itself, the wavelet-

image is not resistant to noise or audio degradations; there

will be changes to these values due to small changes in the

sound (i.e. a small bit of noise, echo, other sounds in the

background, being played over a cell phone, etc). Instead of

using the entire set of wavelets, we only keep the ones that

most characterize the song. We simply select the t top

wavelets (by magnitude), where t << m×n. When we look at

the wavelets for successive images for two songs, we see

easily identifiable patterns both in the wavelet space and even

more clearly when the top-t wavelets are kept (see Figure 1).

One of the interesting findings in the Jacobs study was that

they did not need to retain the coefficients for the top

wavelets. Instead, they simply needed to retain the sign of the

wavelet. This representation is used in this study, as memory

usage must be carefully monitored. The most important

feature of this bit vector is that it is sparse. Sparsity makes it

amenable to further dimensionality reduction through the use

of Min-Hash [18].

The final step of the sub-fingerprint creation process is to take

the sparse wavelet-vector described above and create a

compact representation of it. We explore the use of Min-

Hash to compute sub-fingerprints for these sparse bit vectors.

A fundamental requirement of the sub-fingerprints is that sub-

fingerprint v1 and sub-fingerprint v2 are highly similar if and

only if wavelet signature (v1) and wavelet signature (v2) are

highly similar.

For the purposes of this discussion, given two vectors v1 and

v2, we will refer to match types as being of four types a, b, c,

and d, as shown in Table 1, depending on the corresponding

bits in the vectors. Given these types of matches/mismatches,

we note that for sparse vectors, most of the bit positions will

be of type d. We will define the similarity of two vectors to

be the relative number of rows that are of type a: i.e., Sim(v1,

v2) = a/(a + b + c).

An immediate approach to this problem is to simply randomly

select a set of bit positions, and use them as the signature;

however, that will not work. Because the vectors are sparse,

the resulting signatures will likely be similar because they

will mostly be composed of 0's; however, that will not give a

true indication of similarity, because rows of type a are of

most interest.

The Min-Hash technique works as follows. Permute the bit

positions to some random (but known) re-ordering. Then, for

that permutation, measure for each vector in which position

the first '1' occurs. It is important to note that the probability

that first_one_occurrence(v1) = first_one_occurrence(v2) is

the same as the probability a/(a + b + c): the hash values

agree if the first position with a 1 in either bit vector is of type

a, and they disagree if the first such position is of type b or c.

Note this probability is the same as Sim(v1, v2) – which is

what we need.

We can repeat the above procedure multiple times, each time

Figure 1. The representation for

three songs – 5 consecutive frames

shown for each, skipping 0.2

seconds. For each song, the top row

is the original spectrogram image,

the second row is the wavelet

magnitudes, the third row shows the

top-200 (t=200) wavelets. Note that

the top wavelets have a distinctive

pattern for each of the three songs.

(For each song, the top 2 rows in the

figure have been extensively visually

enhanced to be visible when printed

on paper).

The Dave Matthews Band – Lie in Our Graves (album Crash)

Enya – Shepherd Moons (album Shepherd Moons)

Guns and Roses – Out Ta Get Me (album Appetite for Destruction)

Table 1. Types of Match/Mismatch between

single bits of two binary vectors

Type Vector 1 Vector 2

a 1 1

b 1 0

c 0 1

d 0 0

with a new permutation of bit positions. If we repeat the

process p times, with p different permutations, we get p

projections of the bit vector. These p values are the signature

for the bit vector. We can compare the similarity of the bit

vectors by looking at the exact matches in the signatures of

length p; for a large enough p, it will be very close to the

similarity of the original vectors. In our system, we do not

keep the intermediate bit representation described above.

Instead, we store the Min-Hash computed signature; this is

the final sub-fingerprint of the audio-image. A more

thorough description of the process is given in [18]. Methods

to make the matching process efficient, based on Locality-

Sensitive-Hashing (LSH), are presented with the description

of the retrieval process.

In this study, Min-Hash reduces the size of the signatures

from the intermediate wavelet representation described in this

section to a compact representation of p values. There are

numerous other techniques that are commonly used for

dimensionality reduction – among them techniques such as

Principal Components Analysis (PCA) and Linear

Discriminant Analysis (LDA). We chose to use Min-Hash

due to a chain of reasons. We require discriminative power

across our top wavelet signatures, not descriptive power.

This requirement means that PCA may not be the best

representation and instead has traditionally been handled by

LDA-based methods [1]. Since our top-wavelet signatures

are already a sparse-vector representation, we decided to

explore the use of techniques that were explicitly designed to

handle probabilistic matching and discrimination across

sparse vectors. Min-Hash is such a method and has been used

extensively in data-stream processing. By employing this

method, we avoid the continuous-valued modeling that would

be required for LDA. This LDA conversion to continuous-

valued modeling would require two transformations in our

processing stream: from the top-wavelet signature bit stream

to continuous values (for modeling) and then back to

discretized values (for efficient nearest neighbor look up).

To this point, we have reduced the amount of information

from each spectrogram through three steps. First, we kept

only the top wavelets of the spectral images, associated with

the spectrogram. Second, we reduced the top wavelets to

only two bits. Third, we used the Min-Hash procedure to

explicitly reduce the resulting bit-vector to p values, which

became the final sub-fingerprint.

After these steps, each spectral image (or equivalent-length

audio segment) is represented by a series of p 8-bit integers,

the sub-fingerprint. Even with this compression, efficiently

finding near-neighbors in a p dimensional space is not a

trivial task (when p > 50); naive comparisons are not

practical. Instead, we use a technique, termed Locality-

Sensitive Hashing (LSH) [5]. It is not only efficient in the

number of comparisons that are required (a small fraction of

the dataset will be examined), but also provides noise-

robustness properties.

In contrast to more standard hashing, LSH performs a series

of hashes, each of which examines only a portion of the sub-

fingerprint. The goal is to partition the feature vectors into l

subvectors and to hash each point into l separate hash tables,

each hash table using one of the subvectors as input to the

hash function. Candidate neighbors can be efficiently

retrieved by partitioning the probe feature vector and

collecting the entries in the corresponding hash bins. The

final list of potential neighbors can be created by vote

counting, with each hash casting votes for the entries of its

indexed bin, and retaining the candidates that receive some

minimum number of votes, v. If v = 1, this takes the union of

the candidate lists. If v= l, this takes the intersection.

3.1 Retrieval

The overall retrieval process is shown graphically in Figure 2.

The first difference in the retrieval process, in comparison to

the database-generation process, is that the song is divided

into randomly overlapping segments rather than uniformly

overlapping segments. Randomly selecting the stride amount

is important to avoid problems of unlucky alignments; if the

sampling of the probe is kept constant, it may be possible to

repeatedly find samples that have uniformly large offsets

from the sampling used to create the database.

After the audio snippet is created, its signature is computed in

exactly the same manner as described in the database

generation process (Steps 2-5). The next steps 6-8 describe

an efficient mechanism for finding matches in the database

and measuring their distances from the query, and are the

subject of the next section.

We described the basic characteristics of LSH in the previous

subsection. LSH also supports flexible constraints on which

candidates from the individual component hash tables will be

examined further, as part of the final list of candidate

matches. This flexibility is achieved by adding a requirement

for a minimum number of component hash-table votes.

Under this development, each component hash table votes for

the sub-fingerprints that were retrieved using its p/l-bytes.

Then, only those sub-fingerprints with a minimum of v

component votes would be retained. For example, by setting

v=1, a candidate must only match in one of the subregions in

order to be included in the final candidate list. At the

opposite extreme, by setting v=l, the candidate must match on

all subregions and the LSH operates identically (although

inefficiently) to a standard hash table.

The fingerprints that have at least v votes are then compared

with the query sub-fingerprint. Because each byte of the sub-

fingerprint is a Min-Hash signature, we simply look at the

number of bytes (out of p) that match exactly. The sub-

fingerprint with the maximum of this score is the best match

on that spectral image.

1. Given the audio spectra of a song, extract spectral images of 11.6*w ms duration, with random spacing averaging d-ms
apart.

 For each spectral image:

2. Compute the wavelets on the spectral image

3. Extract the top-t wavelets.

4. Create a binary representation of the top-t wavelets.

5. Use min-hash to create a sub-fingerprint of the top-t wavelets (note that the same permutations used in the
database-creation portion are used here)

6. Using Locality Sensitive Hashing, with b bins, l hash tables, find the sub-fingerprint segments that are close
matches.

7. Discard the sub-fingerprints with less than v matches

8. Compute the Hamming distance from the remaining candidate sub-fingerprints to the query sub-fingerprint.

9. Use Dynamic Programming to combine the matches across time.

Figure 2. Overall architecture for the retrieval process. Step 9 not shown in the diagram.

ABCDEFGHIJKLMNOPQRSTUVWXY

ABCDE EFGHI UVWXY

12,50,92,302

7,92,102

92,102

Fingerprint & count

7: 1

12: 1
50: 1

92: 3

102: 2

302: 1

. . .

92
102

Full Snippet

1. Spectral Images

Computed at
Variable Strides

2. Compute Wavelets

3. Top-t Wavelets

4. Binary Representation

5. Min-Hash Signature;

here shown as 25 bytes

Hash Table 1 Hash Table 2 Hash Table l
6. LSH procedure

with l hashes

7. Count Votes & Retain

those above minimum,

v=2.

8. Compare with query

signature.

Compare (Signature (92),
Signature (q1))

Compare (Signature (102),
Signature (q1))

. . .

3.1.1 Temporal Ordering Constraints

Up to this point, we have discussed matching sub-fingerprints

from the probe into the database. In this section, we describe

the methods that we have explored to accumulate evidence

across sub-fingerprints over the duration of the probe snippet.

The simplest way to combine evidence is a simple voting

scheme that does not take into account temporal information.

With this approach, we keep a similarity counter for each

song. At the start of a new probe snippet, all of these

counters are zero. Then, at each probe sub-fingerprint, for

each candidate that passed the required hash-voting threshold,

we increment the corresponding song counter by the

Hamming similarity between the probe and candidate sub-

fingerprints. The advantage of this approach is its simplicity

and low memory requirements. The disadvantage is that

evidence for a song accumulates without regard to temporal

ordering of the sub-fingerprint matches. Pairs of sub-

fingerprints p(t) / p(t+∆t) within the probe are rewarded

equally for (respectively) matching song sub-fingerprints s(t)

/ s(t–∆t) as they are for matching s(t) / s(t+∆t): there is no

penalty for time reversal. Similarly, for matching s(t) / s(t-

+10∆t): there is no penalty for changing tempo. Even with

these limitations, this simple voting approach is worth

considering for retrieval tasks with overlapping temporal

sampling in the database and with dense temporal sampling in

the probe snippet.

We also explored using dynamic-time warping to accumulate

evidence across time within a database song. Dynamic-time

warping is a form of dynamic programming for imposing

“tempo” constraints in mapping one sequence onto another

[11]. Given a starting correspondence between the two

sequences, the most probable path that satisfies the tempo

constraints is efficiently found. We use both global-slope

constraints (over the length of the match, there can be only

10% change in tempo from the probe to the candidate match)

and local-slope constraints (no single probe can match more

than one song location within a single track and no local-time

inversions are allowed).

This leaves unaddressed the question of selecting the starting

correspondence. Each probe sub-fingerprint can propose

multiple matches in any given song and any of these can be

the correct starting correspondence. In addition, since we

allow matches to be missing, the simple time-synchronized

dynamic-program possible-state list grows over time. To

avoid uncontrolled growth in the use of memory (and

computation) to track all of these possibilities, we impose two

limits. First, we only allow each sub-fingerprint to propose

approximately twenty potential matches for itself, across the

full data base of songs. This limit is only approximate since,

if there are a set of identical-quality (according to Hamming

distance) candidate matches that include one or more of the

top 20 matches, then all of these ties are allowed as

candidates. In the opposite direction, if fewer than 20

matches passed our previous criteria for sub-fingerprint

matches, then only that smaller set is considered. Secondly,

within each song, we use A* pruning on list of current

hypothesized time sequences.

Doing A* pruning on unequal length partial matches requires

a quality-of-match measure that has the length of that partial

match largely normalized out. For example, we do not want

to prune out a new match track that has only a few but strong

matches, due to the presence of a uniformly mediocre match

that extends over large number of sub-fingerprint. As a

result, we selected a figure-of-merit that is the similarity of

the best sub-fingerprint match in the sequence plus the

average across all other sub-fingerprint matches within the

sequence. This reduces to the sub-fingerprint match score in

the case of a single-length match track and to twice that value

if all the sub-fingerprints are equal strength, but it otherwise

does not grow with track length changes. Our figure-of-merit

also includes a small penalty for global tempo changes

(within the allowed ±10%). In summary, the score for each

song is:

• For accumulation without temporal constraints: The sum

of the Hamming similarity of the candidate sub-

fingerprints within that song in the database.

• For accumulation with temporal constraints: The score of

the best temporal track within each song (as described

above), where sub-fingerprint matches within each

temporal track must:

- not introduce local time inversions (no backtracking

within the database-song),

- not match a single probe sub-fingerprint to more

than one database-song sub-fingerprint (the opposite

is allowed, due to unequal sampling rates),

- not include probe-database sub-fingerprint pairs

that, when measured along the database-song axis, lie

outside more than a database sampling stride outside

of the ±10% tempo cone as defined by the starting

probe-database sub-fingerprint pair.

4 Experiments

One of the intrinsic difficulties in designing a large-scale

system is conducting a thorough exploration of the parameter

settings. In this section, we report the results of extensive

testing of parameter sets. Over 50,400 different parameter

combinations were tried to ensure that we select the best

settings and understand the tradeoffs with each parameter.

To explore this large parameter space, we used a 10,000-song

database, with an average song duration of 3.5 minutes.

Since our goal at this point is to understand the general

system performance, we did not use heuristics such as

unequal protection over time (i.e., protecting song beginnings

and choruses more heavily) to reduce the amount of memory

usage or computation.

We used 1000 independent probe snippets into this song data

base. Each of these probes included one of the following

distortions, with each distortion getting equal representation:

1. Time-offset only: This uses a clean signal as the probe

but with an unknown starting time offset, relative to the

database sampling. This unknown sampling offset is also

included with all the other distortions, below.

2. Echo: The added echo retains 90% of the original signal

level and arrives 100 ms after the original sound.

3. Equalization: This process effectively passes the signal

through an equalizer with the settings of [8], which

double the volume on some frequency bands at the same

time as halving the volume on others.

4. MP3-32 Kbps: We encode and decode the test probes at

32-kbps using constant bit-rate MPEG2 layer-3 audio.

5. GSM-Adaptive Multi-Rate (AMR): We encode and

decode the test probes to 4.75-kbps-mode GSM AMR

audio.

6-7. Noise: This adds structured noise (Enya’s Watermark I or

To Die For’s Veil of Tears Epilogue) to the probe at a

fixed (probe-content-independent) RMS-volume.

8-9. Linear Speed-up Modification: We simply change the

playback speed of the sound, speeding it up, or slowing it

down by 2%.

10-11. Time-Scale Modification: This increases/decreases

the tempo by 10% without changing the pitch.

In Section 4.1, we report retrieval results on a forced-choice

task (this assumes that the song exists somewhere in the

database). The results reflect the percentage of times we

selected the correct song from the database, using the

distorted probe snippet. On this task, since we are operating

against 10,000 equally probable songs, random chance is

0.01% correct.

4.1 Empirical Results

With over 50,400 parameter settings, and three interesting

attributes (retrieval accuracy, memory usage, computational

load), there are numerous manners in which to report the

results. In the following 2 graphs, we present the results on

the recognition task for 2 different retrieval-accuracy settings.

The results near the best operating curve are shown in Figure

3. This best operating curve is the set of points which, for the

selected retrieval accuracy, requires the least memory for its

computational-load operating point and uses the least

computation for its memory-usage operating point. In the 2

graphs shown in the figure, we restricted the computation and

memory range to be close to the best operating curve (for the

selected accuracy) but left all experimental results that fell

within the shown range of values, even if they were not on

that operating curve.

There are many interesting points to note about the results.

First, corresponding to the graph showing the best accuracy

(Figure 3, top) only 122 out of the 50,400 experiments had

accuracies of 97.5% or above. As many as 320 additional

parameter combinations might have achieved accuracies in

this range but were terminated early, due the impractically

large amount of computation that they were consuming (more

than 3 million comparisons per probe snippet). Of the 122

points that ran to completion, 85% used 20 or 25 hashes (with

the remaining 15% split between 15 and 10 hashes). There

also was an unequal distribution across the numbers of

retained top wavelets: 400 and 200 top wavelets accounted

for nearly 2/3
rds
 of the run-to-completion points, with the

remaining 1/3 split across 50, 100 and 800 top wavelets.

Second, note that the y-axis (showing the amount of

computation) on all the graphs is logarithmic; therefore, the

amount of computation for the 4 boundary points marked on

Figure 3(top) varies significantly. Computation is measured

by the number the number of full-compares required. A full-

compare is when the p constituents of the query sub-

fingerprint must be compared with the constituents of a

database candidate. Note that this number is then multiplied

by the length of the probe snippet required by the system, the

y parameter. The final number, shown on the graph, is the

total number of full compares required to recognize a snippet.

Third, the best retrieval accuracy on the best operating curve

(Figure 3, top) achieves 97.9% accuracy, while the best

retrieval accuracy over all the parameter setting was only

0.2% higher on this probe set. That 0.2% increase in

accuracy required twice the memory and nearly 2000x the

computation; therefore, was not used in our final system. The

operating point which yielded 97.9% accuracy was used

(from this point on, we shall call the system with these

parameters Waveprint-1); the parameters to obtain this

accuracy were:

• 5% of the wavelets (t=200) were kept; l=20 hashes,

s=0.9 seconds stride in DB creation; y=60 second

queries; this is expected as the longer the query is, the

more information there is for accurate retrieval; d=46 ms

stride in probe; this is a small stride when querying; the

smaller the stride, the more accuracy is expected; 7% of

the hashes (v=2) had to vote for a snippet in order for it to

be considered as a potential match.; T=Dynamic

programming for temporal constraints; again, this is

expected as it is another source of information.

Fourth, the next best results on the best operating curve

(97.8%) took an order of magnitude more computation time.

This was due to two factors. First, the number of hashes

increase, and second, the sampling stride for the query was

reduced; thereby increasing the number of comparisons that

must be done.

Fifth, another interesting point is that we can reduce the

computation by an order of magnitude with little drop in

accuracy. If we look on the operating curve (Figure 3, top),

the bottom labeled point achieves close performance results

(97.5%) using 1/13
th
 of the computation and < 20% more

memory. The following parameters were used for this point

(from this point on, we shall call the system with these

parameters Waveprint-2):

• l=25 hashes; this increase in the number of hashes

accounts for the increased memory; 17% of the hashes

(v=5) had to vote for a snippet; this increase in the voting

accounts for the reduced computation; all other

parameters unchanged.

If we now look at the graph showing 50%-or-better

performance (Figure 3, bottom), we see that the parameters

have changed substantially and that the computation and

memory requirements have been reduced dramatically. For

example, looking at the case with 68.6% accuracy, note the

computation has been reduced by almost 3 orders of

magnitude from our best case, and memory reduced by 3x.

Surprisingly, the number of hash tables that define the best

operating curve for 50% accuracy use 25 hashes, so the

memory reduction is not achieved through reducing the

number of hash tables. Instead, this memory reduction was

achieved by increasing the database stride (s) from 0.9

seconds to 7.4 seconds – thereby reducing the number of

stored sub-fingerprints. In addition, the computation was

reduced by having a large probe stride (d=186 ms) and

keeping the larger voting threshold (17%; v = 5 votes).

Looking across both graphs, the number of retained wavelets

seems to be consistently higher on the lower-accuracy best

operating curves than what was seen for the 97.5%-accuracy

best operating curve. On the 97.5%-accuracy curve, most of

the best operating points retained 5% (200) of the wavelets.

When examining similar curves at 80% and 90% accuracy

levels (not shown here), all the best operating points keep

20% (800) of the wavelets, as do many of the best operating

points on the 50% accuracy curves. The number of wavelets

to keep is not a simple parameter to set and is dependent on

the settings of many other parameters. If too many wavelets

are kept, the sparsity of the binary vector is reduced; thereby

rendering techniques like Min-Hash ineffective. If too few

Figure 3. Results for retrieval accuracy

settings > 97% (top) and > 50%

(bottom). The best-operating cases are

labelled. Two parameters are selected

for further study: The first is at 97.9%

accuracy with settings (t=200 retained

wavelets, l=20 hashes, s=0.9-sec DB

stride, y=60-sec queries, d=46-ms

probe stride, v=7% voting, and

temporal constraints); this is called

Waveprint-1. The second has 97.5%

accuracy with settings (t=200 retained

wavelets, l=25 hashes, s=0.9-sec DB

stride, y=60-sec queries, d=46-ms

probe stride, v=17% voting, and

temporal constraints); this is called

Waveprint-2.

Memory/Computation for > 97.5% forced-choice accuracy

97.8%

(10%,25h@3.7s,60s/24ms,7%v,T)

97.7%

(2.5%,20h@0.9s,60s/93ms,7%v,T)

97.9% (5%,20h@0.9s,60s/46ms,7%v,T)

97.5%

(5%,25h@0.9s,60s/46ms,17%v,T)

100

1000

10000

100000

1000000

10000000

100 200 300 400 500 600 700 800 900 1000

Memory (MB usage on 10K-song database)

c
o
m
p
u
ta
ti
o
n
 (
c
o
m
p
a
ri
s
o
n
s
 /
 p
ro
b
e
-s
n
ip
p
e
t)

Waveprint 2

Waveprint 1

Memory/Computation for > 50% forced-choice accuracy

57.6%

(2.5%,10h@7.4s,60s/46ms,17%v)

57.1%

(1.25%,10h@7.4s,60s/46ms,17%v,T)

53.5% (20%,25h@7.4s,10s/46ms,17%v)

68.6%

(20%,25h@7.4s,60s/186ms,17%v)

1

10

100

100 150 200 250 300

Memory (MB used on 10K-song database)

c
o
m
p
u
ta
ti
o
n
 (
c
o
m
p
a
ri
s
o
n
s
 /
 p
ro
b
e
-s
n
ip
p
e
t)

wavelets are kept, the signature may not contain enough

information about the underlying signal.

4.2 Comparisons

In this section, we analyze our system’s performance. The

retrieval performance of Waveprint-1 and Waveprint-2, for a

new test set, across three different probe lengths, is shown in

Table 2.

For performance comparison, we use the extension to [8] that

was developed by [10].
1
 In addition to the exact system

developed by Ke, we also tried a modification that simply

changes the amplitude normalization to a smoothly varying

normalization that is computed on a sliding window of the

surrounding 5 seconds of audio. Unfortunately, their system

was not designed to handle large timing variations, so we did

not include time-based degradations in the next set of tests.
2

Instead, we created a new test set that replaced linear-time-

scale modification and time-scale modification with other

degradations. The results of all the systems on this modified-

test set are given in Table 3.

In terms of memory, we can express our usage in terms of the

parameters of the system. The number of songs stored in our

database is N, the average length of a song is M.

Memory Usage =

 O (l * N * M / s) + O (l * b) + O ((p+α) * N * M / s)

+ Temporal_Constraint_Overhead

Here, O (l * N * M / s) is the number of pointers stored across

all hash tables; these point to the actual sub-fingerprints. (M

/ s) is the number of sub-fingerprints that are created for each

song. N is the number of songs, and l is the number of hash

tables used. In practice, since these are pointers, they are

represented with 4 bytes. O (l * b): we used very simple

hash tables that were implemented as arrays; two elements are

stored in each bin of the array, a pointer to its contents and a

count of how many sub-fingerprints are stored in the bin. In

practice, since these are a pointer and an integer, they are

represented as 8 bytes (total).

1
 Ke’s system can be downloaded from:

(http://www.cs.cmu.edu/~yke/musicretrieval/).

2
 Since an extension of Ke’s Bernoulli-Markov temporal

model to include large timing variations should be possible,

we omitted the pessimistic performance numbers that we

observed of the [10] default system.

O((p+α) * N * M /s): for every spectral image examined, we

need to keep a sub-fingerprint. The sub-fingerprint is p

elements long (the number of permutations used in the min-

hash signature). In practice, each value is between 0-255, so

it can be represented as 1 byte. α is bookkeeping storage to

relate each fingerprint to its position into its song.

Temporal_Constraint_Overhead: Although we will not

explain this in great detail, there is a memory cost when using

temporal constraints with dynamic programming. It is minor

in comparison to the rest of the memory used elsewhere.

To make this concrete, we can estimate the memory required

for the tests performed for a memory-optimized system (note

that there are many modifications that can be made in the

coding of the procedures which yield time-memory tradeoffs,

but they are beyond the scope of this paper. Some were used

in the experiments described in Figure 3 – which rendered it

not memory optimal).

For Waveprint-1, we used l = 20, p = 100, s = .928 seconds,

b=100,000 bins. We assumed a database of 10,000 songs, of

average length 3.5 minutes. We estimated the

Temporal_Constraint_Overhead at 10 megabytes. This

yields a total of approximately 0.45x10
9
bytes of memory.

Therefore, on a standard 2GB machine, we can store

approximately 47,000 songs without touching disk for

retrieval.

Doing the same analysis for Waveprint-2 (l=25 instead of 20),

and keeping the Temporal_Constraint_Overhead at 10

megabytes, we get 0.50x10
9
bytes of memory. Therefore, on

a standard 2GB machine, we can store approximately 43,000

songs without touching disk for retrieval.

Next, we describe the speed of our system. The speed

achievable is dependent on the accuracy desired: The longer

the sample snippet, the more reliable the recognition is but the

longer the processing takes. The timing results are as follows

(measured by how much faster than real-time): 10-sec probe,

286×faster; 30 seconds, 94×faster; 60 seconds, 47×faster.
 3

These timing results do not include the time required to create

the spectrogram. Further, it should be possible to speed up

the most computationally expensive portion of the process

(computing and sorting the wavelets, which account for

approximately 90% of the cost) by a factor of ~16-32x. This

3
 The machine tests were performed on a 3.4 GHz Pentium-4

CPU, with 3 GB memory and 1 MB cache.

Table 3. Performance Comparison – Test Set without

Time-Scale- and Speed-Modification Degradation

System 10 Sec 30 Sec 60 sec

Ke - Original 80.1 83.0 85.0

Ke - Modified 84.8 88.1 90.0

Waveprint-1 93.8 96.4 96.9

Waveprint-2 90.8 96.4 96.9

Table 2. Performance Comparison – Full Test Set

System 10 Sec 30 Sec 60 sec

Waveprint-1 94.3 96.5 97.9

Waveprint-2 89.5 96.2 97.5

can be done by reusing partial results across successive sub-

fingerprints, since much of the computation is repeated across

the time-windows examined.

5 Conclusions & Future Work

In this work, we have presented the Waveprint audio

identification system. The system builds on the insight of

[10]: the task of audio recognition can be effectively

addressed through computer-vision techniques. In this work,

we extended the computer-vision work presented in [9] for

retrieving near-duplicate images from a large corpus of image

data to the task of audio retrieval. The accuracy of the

resulting system remains high even when tested on severely

degraded probe samples.

Immediate next steps include scaling the database. We have

seen preliminary promising results, both in terms of accuracy

and speed, especially in the Waveprint-2 setting. Other

future work includes exploring applications beyond music

matching, such as using the system for matching television

broadcasts. Finally, automatic methods for ascertaining and

using the stability and distribution of points within the hash-

bins and the top-wavelets are being explored.

Acknowledgements

We would like to acknowledge the help of Yan Ke, Derek

Hoiem, and Rahul Sukthankar for providing their code for

comparison. Additionally, this paper has benefited from

conversations with many people, including Mayur Datar,

David ‘Pablo’ Cohn and Sergey Ioffe.

References

[1] C. Burges, J. Platt, S. Jana (2003). Distortion

Discriminant Analysis for Audio Fingerprinting, IEEE

Trans. PAMI 11, (3).

[2] M. Covell, S. Baluja, M. Fink (2006). Advertisement

Replacement using Acoustic and Visual Repetition, Proc.

IEEE Workshop on Multimedia Signal Processing.

[3] J. Deller, Jr., J. Hansen, J. Proakis (1999) Discrete-Time

Processing of Speech Signals Wiley-IEEE Press.

[4] M. Fink, M. Covell, S. Baluja (2006). Social- and

Interactive-Television Applications Based on Real-Time

Ambient-Audio Identification, Proceedings of EuroITV. .

[5] A. Gionis, P. Indyk, R. Motwani (1999), Similarity search

in high dimensions via hashing. Proc. International

Conference on Very Large Data Bases,.

[6] Google Video Team (2005). About Google Video.

http://video.google.com/video_about.html.

[7] Gracenote Press Release (2006). Gracenote Global Media

Database used by over 150 Million Music Fans Worldwide,

Performing over 6 Billion Music Searches in 2005.

http://www.gracenote.com/music/corporate/press/article.ht

ml/date=2006010502

[8] J. Haitsma, T. Kalker (2002). A Highly Robust Audio

Fingerprinting System. Proc. International Conf. Music

Information Retrieval.

[9] C. Jacobs, Finkelstein, A., Salesin, D. (1995) Fast

Multiresolution Image Querying. Proc. SIGGRAPH,

[10] Y. Ke, D. Hoiem, R. Sukthankar (2005). Computer

Vision for Music Identification. Proc. Computer Vision and

Pattern Recognition.

[11] C. S. Myers, L. R. Rabiner (1981). A comparative study

of several dynamic time-warping algorithms for connected

word recognition. The Bell System Technical Journal,

60(7):1389-1409.

[12] J.S. Seo,, J.Haitsma, T. Kalker (2002). Linear Speed-

Change Resilient Audio Fingerprinting. Proc. IEEE

Workshop on Model based Processing and Coding of

Audio.

[13] G. Sing (2004). Content Repurposing. IEEE Multimedia

11(1).

[14] Shazam (2006). Shazam Entertainment Limited.

http://www.shazam.com/

[15] E. Stollnitz T. DeRose D. Salesin (1995). Wavelets for

Computer Graphics: A Primer Part I. IEEE Computer

Graphics and Applications, 15(3).

[16] P. Viola & M. Jones (2001). Robust Real-time Object

Detection. Proc. International Conf. Computer Vision.

 [18] E. Cohen, et al.. (2001) Finding interesting associations

without support pruning. Knowledge and Data

Engineering, 13(1).

