

A VERY FAST VIDEO SPATIAL RESOLUTION REDUCTION TRANSCODER
Bo Shen, Sumit Roy

Hewlett-Packard Laboratories
{boshen, sumit}@hpl.hp.com

ABSTRACT

With the introduction of the next generation wireless
network, mobile devices access increasingly more media-
rich content. However, a key factor that prevents a mobile
device from accessing multimedia content is that it does not
have enough display real estate to render the content that is
traditionally created for the desktop web client. Moreover,
the wireless network typically has lower bandwidth
compared to a wired network of the same time frame.
Therefore, a transcoder is needed somewhere in the
network to transform multimedia content to the appropriate
form factor and bandwidth requirement. This paper
introduces an extremely fast transcoder of such kind.
Comparing to the previous methods, additional
computation is saved while the quality of transcoding is
maintained. This saving in computing resources maps into
the benefit that more concurrent sessions can be supported
on one transcoding device. This scalability is crucial for the
wireless network to handle user requests that might be very
intensive at times.

1. INTRODUCTION

The Internet brings heterogeneous devices together. For
rich media transmission over the wireless Internet, content
adaptation is a key issue. The original content may have
been coded at higher resolution and higher bit rate, say
720x480 at 4 Mbps for DVD quality, or 320x240 at 1
Mbps for desktop clients connected to the Internet through
T1 line. However, due to the characteristics of the mobile
communication – low bandwidth channel and limited
display real estate, a 100kbps video at a lower resolution is
desired. Current 3G wireless communication targets at
providing a 128~384Kpbs communication channel.
Therefore, a transcoder is needed in the network to adapt
the content to the appropriate size and bit rate.

A straightforward method to perform this transcoding
is to decode the original stream, down sample the decoded
frames to a smaller size and re-encode to a lower bit rate.
Considering a typical CCIR601 MPEG-2 video, it takes the
full power of a 400Mhz CPU to perform real-time
decoding. Encoding is even more expensive, which makes
the straightforward method non-practical. Furthermore, if
the transcoding is provided as a network service between
content provider and content consumer, one transcoding
unit is expected to able to support as many concurrent
sessions as possible. This scalability is crucial for the
wireless network to handle user requests that might be very

intensive at times. Therefore, it is extremely worthwhile to
develop fast algorithms to reduce the CPU load for such
kind of transcoding session.

In a previous work [1], we used a compressed-domain
approach, where the motion information in the original
video is reused. The approach significantly improved the
performance since the costly motion estimation process is
eliminated. However, all the frames in the original video
need to be reconstructed, or otherwise, a frequency domain
intra version of the inter frames needs to be constructed
based on the algorithms proposed in [2]. However, due to
its irregular data access pattern, this process still consumes
large amount of CPU cycles.

This paper lays out a further optimized video
transcoding algorithm. A macroblock-aware approach is
proposed to take advantage of compressed domain
processing techniques. In this approach, the transcoder
performs transcoding at the macroblock level, therefore is
able to take advantage of different combinations of
macroblock types to avoid reconstruction of the original
frame. However, we still need the original size reference
frame for the decoding of future frames in the original
video. The solution is that we approximate the original
frame by up sampling the down-sampled version. As a
result, only one-fourth of the macroblocks need to be
reconstructed in a down-sample-by-two operation.
Considering the fact that we can utilize an optimized DCT
domain down-sampling methods [3] plus that the up-
sampling operation is an easily optimizable operation either
by hardware DSP design or MMX implementation, the
computational saving is significant. For inter-frames,
similar algorithms can be used if a sufficient number of the
involved macroblocks are intra macroblocks. The
approximation by up sampling is based on the rationale
that, to generate a down-sampled inter-frame, the quality
degradation is negligible when performing motion
compensation based on down-sampled reference frames.

The paper is organized as follows. In Section 2, we
describe the algorithm in detail and propose a transcoding
system. Performance analysis and testing results are
presented in Section 3. We conclude in Section 4.

2. ALGORITHM & SYSTEM

2.1. Macroblock-aware transcoding algorithm
To explain in more detail how the macroblock-aware
transcoding algorithm works, this section goes through a
down-sampling-by-two operation on MPEG [4] video.
Figure 1 shows the process for each type of pictures as well

as different combinations of macroblocks in an MPEG
video down-sampling application. The relative size of
blocks and frames is also illustrated to reflect the change
before and after the processes. For I-picture, a DCT
domain down-sampling method [3] can be used to generate
a down-sampled version of the I-picture. A pixel domain
version has to be generated afterwards as a reference for
the future P- or B-pictures in the group of picture (see the
motion compensation arrow). Subsequently, an up
sampling is performed to approximate the pixel domain
version in the original size. The original size picture is
needed for the reconstruction of the future P- or B-picture
(see the reconstruction arrow). In this figure, the dotted-line
boxes correspond to the frame buffer for the original size
video, and the shaded boxes to the frame buffer for the
down-sampled version.

For P- and B-picture, a mode-decision module decides
whether the output macroblock is coded as inter or intra
macroblock. If there are one intra block and three forward-
predicted ones in the input macroblocks, the mode-decision
module may decide to code the output block as a forward-
predicted one. In general, assuming k macroblocks are
involved in generating one output macroblock, the mode
decision module decides that if at least m out of k
macroblocks are intra macroblocks, the output macroblock
will be coded as intra. Otherwise, the output macroblock is
coded as inter. If the output macroblock is coded as intra,
we further define a quantity n, where m<n<k. Depending
on the actual number of input intra macroblocks, the
selection of n decides what procedure the transcoder takes
to generate the output intra macroblock. In summary, we
have the following four scenarios that the macroblock-
aware transcoder handles differently.
• Case 1: the output MB is an intra MB, and m to n input

macroblocks are intra.
• Case 2: the output MB is an intra MB, and n to (k-1)

input macroblocks are intra.
• Case 3: the output MB is an intra MB, and all k input

macroblocks are intra.
• Case 4: the output MB is an inter MB.

Using the down-sample-by-two operation as an
example, four macroblocks are involved in generating one
output macroblock, i.e. k=4. If we further select (m, n)=(2,
3), we can use IIFF-I, IIIF-I, IIII-I and IFFF-F to map the
aforementioned four scenarios. These symbols represent
different compositions of the four original macroblocks.
For example, if there are one intra block and three forward-
predicted ones among the four input macroblocks, a mode-
decision module may decide to code the output block as a
forward-predicted one, hence the symbol IFFF-F. The other
three symbols can be interpreted similarly. Note that each
symbol does not literately represent one exact combination
of input macroblocks, other possible combinations can be
handled based on the understanding of these four scenarios.

P-picture

I
I I
I

I F
FF

I-picture

B-picture

I
I I
I

I F
FF

I I
FF

pixel picture

I

F

I

I

down2 fdct

idct
fdct

up2

idct

down2dct idct

down2

down2dct idct up2

down2dct

motion
compansation

I I
FI I

up2down2dct idct
idct fdct

I I
FF

I I
FI I

down2dct
idct fdct

same as that in P-pciture

same as that in P-pciture

-

reconstruction

Figure 1 Data flow of the transcoder
To begin with, let us consider Case 4, the IFFF-F case.

If the output macroblock is decided to be a predicted one,
the original involved macroblocks are reconstructed
regardless of whether the macroblocks are intra or non-
intra. A spatial domain down sampling is performed on the
reconstructed macroblock to generate a pixel domain
output macroblock. Subsequently, the residual is generated
based on the motion vector obtained from the original
MPEG video. In this sequence of procedures, the
reconstructed macroblocks along with subsequently down
sampled version are kept as reference for the future P- or
B-pictures. This scenario has no difference than a regular
decoding and re-encoding scheme except that the motion
information is reused instead of obtained through a costly
motion estimation process.

If the output macroblock is decided to be an intra
block, three different schemes are depicted in Figure 1.
Case 3 represents the case when all four input macroblocks
are intra (IIII-I). In this case, the DCT domain down
sampling methods can be directly employed. Subsequently,
the output macroblock is inverse discrete cosine
transformed (IDCTed) to the pixel domain and the up-
sampled version is also obtained for possible use as a
reference frame for future pictures.

If only one of the four original is a non-intra
macroblock (e.g., the IIIF-I scenario for Case 2), only the
non-intra macroblock is reconstructed and a DCT version
is generated through the forward discrete cosine transform
(FDCT) process (this process can also be performed
through a DCT domain motion compensation [2]). Then
the four DCT macroblocks are used to construct one DCT
macroblock using a DCT domain downscaling algorithm
[3] (see the down2DCT arrow). Subsequently, the output
macroblock is IDCTed to the pixel domain and the up-
sampled version is also obtained for possible use as a
reference frame for future pictures.

For Case 1, we use IIFF-I as an example. In this case,
we reconstruct every involved macroblock regardless of

whether it is intra or not. Subsequently, a spatial domain
down sampling is performed on the reconstructed
macroblocks to generate a pixel domain output
macroblock. The macroblock is then FDCTed to generate
the output intra macroblock. In this case, we cannot take
advantage of the DCT domain down-sampling method. The
reason is that it is more costly to reconstruct the intra DCT
version of the two input inter macroblocks.

For B-pictures, the four different scenarios described
for P-pictures apply as well except that the reconstruction
of some macroblocks may take reference from past and/or
future pictures. In addition, as shown in the case of IIIF-I
and IIII-I, we do not have to go through the processes of
IDCT and up sampling for obtaining the pixel frame with
original size. This is due to the fact that B-pictures are not
used as reference frames.

The process for down sampling by a factor of three or
four can be easily derived from the above. In down-sample-
by-four case, k is equal to 16. If we select m as 9, we found
that it is optimal to select n as 12. Similar scenarios from
Case 1 to 4 can be identified and handled accordingly by
the macroblock-aware transcoder. Note that since the
down-sample-by-four operation brings in many more
possible combinations of macroblocks, further optimization
can be done for some cases depending on the locations of
the involved intra macroblocks.

2.2. Transcoding system
Figure 2 illustrates the data flow of the transcoding process.
From the input buffer, variable length code (VLC) decoder
parses the input video stream. Motion vectors are passed to
motion compensation module and MV Generator for
generating new motion vectors for the downscaled version.
The DCT data is sent to inverse quantizer and
subsequently, a mode decision module decides whether the
output macroblock is coded as inter or intra.
• If it is Case 2 and 3, the input DCT data is sent to the

DCT domain down-sampling module to generate down
sampled DCT data. For the macroblocks directly
generated by DCT domain down sampling, IDCT is
performed and the result is saved in Frame Buffer B.
Furthermore, a up sampling is performed to generate a
reconstructed version with original size that is saved in
Frame Buffer A.

• Otherwise, the macroblock needs to be reconstructed.
The DCT data is IDCTed and motion compensated if the
macroblock is an inter macroblocks. The result is saved
in Frame Buffer A. Therefore, the data in Frame Buffer
A is the reconstructed macroblock with original size. It is
then down sampled and put into Frame Buffer B.

The data in Frame Buffer A is used to reconstruct
future frames in the original video. The data in Frame
Buffer B is used to generate the new residual based on the
new motion vector. The residual is subsequently FDCTed
and sent along with the DCT data generated directly by

DCT domain down-sampling module to the forward
quantizer. The rate control module controls the step size of
the quantizer in order to achieve specified output bit rate.
Finally, VLC encoder generates the output binary bit
stream.

Input
Buffer IDCTVLC

Decoder
Inverse

Quantizer
Frame

Buffer A

DCT Frame
Buffer

Motion
Compensation

Down SamplingDCT Domain
Down Sampling

motion vector

FDCT

-

Frame
Buffer B

Motion
Compensation

Forward
Quantizer

Rate Control

VLC
Encoder

Ouput
Buffer

MV
Generator

IDCT

new motion vector

Up SamplingMode
Decision

Figure 2 Processing flow of the transcoder
MV Generator is responsible to generate new motion

vector based on the motion vectors from the original
stream. The new motion vector could be a scaled version of
the some weighted average of the original ones. A previous
work [1] presents some analysis regarding the optimal way
to generating the new motion vector.

This system represents a simplified version in which an
open-loop approach is used. The open-loop approach may
cause the error propagation problem on the receiver.
However, the simplified system performs much faster due
to the elimination of one inverse quantization process and
one IDCT process per loop.

3. ANALYSES & TESTING RESULT

Primarily, the computational saving comes from the
elimination of a number of IDCT processes. Here, one
IDCT process represents the IDCT operations needed for
the reconstruction of one macroblock. For 420-
chrominance compression [4], six 8x8 IDCT operations are
invoked for the reconstruction of one macroblock. For I-
pictures, the number of IDCT operations required is 1/N2
times originally required, where N is the down-sampling
factor. For example, for the down-sample-by-two
operation, it originally needs four IDCT operations for one
output macroblock, now only one IDCT is needed.
Considering that one DCT domain down sampling process
cost similar computation as one FDCT, three IDCTs are
saved, which is about 75% saving. The same applies to the
IIII-I case in P- and B-pictures. For the IIIF-F case in P-
and B-pictures, two IDCTs are required instead of four.
Considering an additional DCT domain down sampling
process, one IDCT is saved, which is about 25% saving.
Additional saving comes from the elimination of the
reconstruction of pixel domain version of B-pictures for

IIIF-I and IIII-I cases. The saving is more significant for
down-sample-by-three (N=3) and down-sample-by-four
(N=4) cases.

The computational saving is video sequence
dependent. For example, if a P-picture in the original
stream contains mostly predicted macroblocks, the
advantages brought by the smart handling of IIII-I or IIIF-I
case are limited. However, since this algorithm is targeting
at transcoding high bit-rate and high-resolution video to
low bit-rate and low-resolution video, statistics show that
many macroblocks are coded in intra mode in the original
high bit-rate and high-resolution video. Figure 3 shows the
percentage of different cases for each frame in the football
test stream. The football test stream contains 150 frames of
size 704x480. It is coded at 6 Mbps using IBBPBB…
structure in groups of pictures that have 15 frames.

0%

25%

50%

75%

100%

1 150

Frame number

Pe
rc

en
ta

ge

4
3
2
1

Figure 3 Stacked percentage of different cases
To test the performance of the macroblock-aware

transcoder, we perform a down-sample-by-two operation
on the test stream. The transcoder generates an output
video that is coded at 1.5 Mbps with the size of 352x240.
Two PSNR curves are shown in Figure 4. The old PSNR
curve is obtained by using picture-level reconstruction in
the transcoding; the new PSNR curve is obtained by using
macroblock-aware transcoding proposed in this paper. Both
PSNR are computed against the frames generated by
decoding the original video and down sampling the result
by two. A frame-by-frame quality comparison is given in
Figure 5.

20

25

30

35

40

45

50

1 150
Frame number

PS
N

R
 (d

B)

old
new

Figure 4 PSNR of each frame generated by the old and the

new transcoder

-1

-0.5

0

0.5

1

1.5

2

1 150
Frame number

PS
N

R
 d

iff
er

en
ce

 (d
B)

Figure 5 PSNR difference

The experiment indicates that the macroblock-aware
transcoding renders similar quality output. Note that the
PSNR drop for I-pictures is relatively larger. This is
exclusively due to the approximation nature of the DCT
domain down sampling algorithm that is used in the
implementation.

4. CONCLUSION

Even by reusing the original motion information, the
processing speed to spatial resolution reduction of
compressed video is limited by the necessity of the
reconstruction of original frames. This paper presented an
optimized algorithm that avoids the reconstruction of
original frames as much as possible. Moreover, the
proposed algorithm takes advantage of fast DCT domain
down sampling methods as much as possible without the
reconstruction of intra DCT version of original frames.
Therefore, additional computational saving is achieved
with negligible loss of quality. The algorithm is
implemented in an MPEG video transcoding system. The
algorithm applies to other types of compressed video as
well, as long as motion-compensated motion estimation and
DCT-based frequency domain compression techniques are
used in the compression.

5. REFERENCES
[1] B. Shen, I. Sethi and V. Bhaskaran, “Adaptive motion-vector
resampling for compressed video downscaling,” IEEE Trans. On
Circuits and Systems for Video Technology, vol. 9, no. 6, pp.
926-936, Sept. 1999.

[2] N. Merhav and V. Bhaskaran, “A fast algorithm for DCT-
domain inverse motion compensation,” Proc. ICASSP’96,
Atlanta, GA, pp. IV.2307-2310, May 1996.

 [3] B. Natarajan and V. Bhaskaran, “A fast approximate
algorithm for scaling down digital images in the DCT domain,”
Proc. IEEE int. Conf. On Image Processing (ICIP), Washington
DC. Oct. 1995.

 [4] J. L. Mitchell, W. B. Pannebaker, C. E. Fogg and D. J.
LeGall, MPEG Video Compression Standard, Chapman& Hall,
1995.

	A VERY FAST VIDEO SPATIAL RESOLUTION REDUCTION TRANSCODER

