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ABSTRACT 

 
With the introduction of the next generation wireless 
network, mobile devices access increasingly more media-
rich content. However, a key factor that prevents a mobile 
device from accessing multimedia content is that it does not 
have enough display real estate to render the content that is 
traditionally created for the desktop web client.  Moreover, 
the wireless network typically has lower bandwidth 
compared to a wired network of the same time frame. 
Therefore, a transcoder is needed somewhere in the 
network to transform multimedia content to the appropriate 
form factor and bandwidth requirement. This paper 
introduces an extremely fast transcoder of such kind. 
Comparing to the previous methods, additional 
computation is saved while the quality of transcoding is 
maintained. This saving in computing resources maps into 
the benefit that more concurrent sessions can be supported 
on one transcoding device. This scalability is crucial for the 
wireless network to handle user requests that might be very 
intensive at times. 
 

1. INTRODUCTION 
 
The Internet brings heterogeneous devices together. For 
rich media transmission over the wireless Internet, content 
adaptation is a key issue. The original content may have 
been coded at higher resolution and higher bit rate, say 
720x480 at 4 Mbps for DVD quality, or 320x240 at 1 
Mbps for desktop clients connected to the Internet through 
T1 line. However, due to the characteristics of the mobile 
communication – low bandwidth channel and limited 
display real estate, a 100kbps video at a lower resolution is 
desired. Current 3G wireless communication targets at 
providing a 128~384Kpbs communication channel. 
Therefore, a transcoder is needed in the network to adapt 
the content to the appropriate size and bit rate. 

A straightforward method to perform this transcoding 
is to decode the original stream, down sample the decoded 
frames to a smaller size and re-encode to a lower bit rate. 
Considering a typical CCIR601 MPEG-2 video, it takes the 
full power of a 400Mhz CPU to perform real-time 
decoding. Encoding is even more expensive, which makes 
the straightforward method non-practical. Furthermore, if 
the transcoding is provided as a network service between 
content provider and content consumer, one transcoding 
unit is expected to able to support as many concurrent 
sessions as possible. This scalability is crucial for the 
wireless network to handle user requests that might be very 

intensive at times. Therefore, it is extremely worthwhile to 
develop fast algorithms to reduce the CPU load for such 
kind of transcoding session. 

In a previous work [1], we used a compressed-domain 
approach, where the motion information in the original 
video is reused. The approach significantly improved the 
performance since the costly motion estimation process is 
eliminated. However, all the frames in the original video 
need to be reconstructed, or otherwise, a frequency domain 
intra version of the inter frames needs to be constructed 
based on the algorithms proposed in [2]. However, due to 
its irregular data access pattern, this process still consumes 
large amount of CPU cycles. 

This paper lays out a further optimized video 
transcoding algorithm. A macroblock-aware approach is 
proposed to take advantage of compressed domain 
processing techniques. In this approach, the transcoder 
performs transcoding at the macroblock level, therefore is 
able to take advantage of different combinations of 
macroblock types to avoid reconstruction of the original 
frame. However, we still need the original size reference 
frame for the decoding of future frames in the original 
video. The solution is that we approximate the original 
frame by up sampling the down-sampled version. As a 
result, only one-fourth of the macroblocks need to be 
reconstructed in a down-sample-by-two operation. 
Considering the fact that we can utilize an optimized DCT 
domain down-sampling methods [3] plus that the up-
sampling operation is an easily optimizable operation either 
by hardware DSP design or MMX implementation, the 
computational saving is significant. For inter-frames, 
similar algorithms can be used if a sufficient number of the 
involved macroblocks are intra macroblocks. The 
approximation by up sampling is based on the rationale 
that, to generate a down-sampled inter-frame, the quality 
degradation is negligible when performing motion 
compensation based on down-sampled reference frames. 

The paper is organized as follows. In Section 2, we 
describe the algorithm in detail and propose a transcoding 
system. Performance analysis and testing results are 
presented in Section 3.  We conclude in Section 4. 
 

2.  ALGORITHM & SYSTEM 
 
2.1. Macroblock-aware transcoding algorithm 
To explain in more detail how the macroblock-aware 
transcoding algorithm works, this section goes through a 
down-sampling-by-two operation on MPEG [4] video. 
Figure 1 shows the process for each type of pictures as well 



 

 

as different combinations of macroblocks in an MPEG 
video down-sampling application. The relative size of 
blocks and frames is also illustrated to reflect the change 
before and after the processes. For I-picture, a DCT 
domain down-sampling method [3] can be used to generate 
a down-sampled version of the I-picture. A pixel domain 
version has to be generated afterwards as a reference for 
the future P- or B-pictures in the group of picture (see the 
motion compensation arrow). Subsequently, an up 
sampling is performed to approximate the pixel domain 
version in the original size. The original size picture is 
needed for the reconstruction of the future P- or B-picture 
(see the reconstruction arrow). In this figure, the dotted-line 
boxes correspond to the frame buffer for the original size 
video, and the shaded boxes to the frame buffer for the 
down-sampled version. 

For P- and B-picture, a mode-decision module decides 
whether the output macroblock is coded as inter or intra 
macroblock. If there are one intra block and three forward-
predicted ones in the input macroblocks, the mode-decision 
module may decide to code the output block as a forward-
predicted one. In general, assuming k macroblocks are 
involved in generating one output macroblock, the mode 
decision module decides that if at least m out of k 
macroblocks are intra macroblocks, the output macroblock 
will be coded as intra. Otherwise, the output macroblock is 
coded as inter. If the output macroblock is coded as intra, 
we further define a quantity n, where m<n<k. Depending 
on the actual number of input intra macroblocks, the 
selection of n decides what procedure the transcoder takes 
to generate the output intra macroblock. In summary, we 
have the following four scenarios that the macroblock-
aware transcoder handles differently. 
• Case 1: the output MB is an intra MB, and m to n input 

macroblocks are intra. 
• Case 2: the output MB is an intra MB, and n to (k-1) 

input macroblocks are intra. 
• Case 3: the output MB is an intra MB, and all k input 

macroblocks are intra. 
• Case 4: the output MB is an inter MB. 

Using the down-sample-by-two operation as an 
example, four macroblocks are involved in generating one 
output macroblock, i.e. k=4. If we further select (m, n)=(2, 
3), we can use IIFF-I, IIIF-I, IIII-I and IFFF-F to map the 
aforementioned four scenarios. These symbols represent 
different compositions of the four original macroblocks. 
For example, if there are one intra block and three forward-
predicted ones among the four input macroblocks, a mode-
decision module may decide to code the output block as a 
forward-predicted one, hence the symbol IFFF-F. The other 
three symbols can be interpreted similarly. Note that each 
symbol does not literately represent one exact combination 
of input macroblocks, other possible combinations can be 
handled based on the understanding of these four scenarios. 
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Figure 1 Data flow of the transcoder 
To begin with, let us consider Case 4, the IFFF-F case. 

If the output macroblock is decided to be a predicted one, 
the original involved macroblocks are reconstructed 
regardless of whether the macroblocks are intra or non-
intra. A spatial domain down sampling is performed on the 
reconstructed macroblock to generate a pixel domain 
output macroblock. Subsequently, the residual is generated 
based on the motion vector obtained from the original 
MPEG video. In this sequence of procedures, the 
reconstructed macroblocks along with subsequently down 
sampled version are kept as reference for the future P- or 
B-pictures.  This scenario has no difference than a regular 
decoding and re-encoding scheme except that the motion 
information is reused instead of obtained through a costly 
motion estimation process. 

If the output macroblock is decided to be an intra 
block, three different schemes are depicted in Figure 1. 
Case 3 represents the case when all four input macroblocks 
are intra (IIII-I). In this case, the DCT domain down 
sampling methods can be directly employed. Subsequently, 
the output macroblock is inverse discrete cosine 
transformed (IDCTed) to the pixel domain and the up-
sampled version is also obtained for possible use as a 
reference frame for future pictures.  

If only one of the four original is a non-intra 
macroblock (e.g., the IIIF-I scenario for Case 2), only the 
non-intra macroblock is reconstructed and a DCT version 
is generated through the forward discrete cosine transform 
(FDCT) process (this process can also be performed 
through a DCT domain motion compensation [2]). Then 
the four DCT macroblocks are used to construct one DCT 
macroblock using a DCT domain downscaling algorithm 
[3] (see the down2DCT arrow). Subsequently, the output 
macroblock is IDCTed to the pixel domain and the up-
sampled version is also obtained for possible use as a 
reference frame for future pictures. 

For Case 1, we use IIFF-I as an example. In this case, 
we reconstruct every involved macroblock regardless of 



 

 

whether it is intra or not. Subsequently, a spatial domain 
down sampling is performed on the reconstructed 
macroblocks to generate a pixel domain output 
macroblock. The macroblock is then FDCTed to generate 
the output intra macroblock. In this case, we cannot take 
advantage of the DCT domain down-sampling method. The 
reason is that it is more costly to reconstruct the intra DCT 
version of the two input inter macroblocks. 

For B-pictures, the four different scenarios described 
for P-pictures apply as well except that the reconstruction 
of some macroblocks may take reference from past and/or 
future pictures. In addition, as shown in the case of IIIF-I 
and IIII-I, we do not have to go through the processes of 
IDCT and up sampling for obtaining the pixel frame with 
original size. This is due to the fact that B-pictures are not 
used as reference frames. 

The process for down sampling by a factor of three or 
four can be easily derived from the above. In down-sample-
by-four case, k is equal to 16. If we select m as 9, we found 
that it is optimal to select n as 12. Similar scenarios from 
Case 1 to 4 can be identified and handled accordingly by 
the macroblock-aware transcoder. Note that since the 
down-sample-by-four operation brings in many more 
possible combinations of macroblocks, further optimization 
can be done for some cases depending on the locations of 
the involved intra macroblocks. 
 
2.2. Transcoding system 
Figure 2 illustrates the data flow of the transcoding process. 
From the input buffer, variable length code (VLC) decoder 
parses the input video stream. Motion vectors are passed to 
motion compensation module and MV Generator for 
generating new motion vectors for the downscaled version. 
The DCT data is sent to inverse quantizer and 
subsequently, a mode decision module decides whether the 
output macroblock is coded as inter or intra.  
• If it is Case 2 and 3, the input DCT data is sent to the 

DCT domain down-sampling module to generate down 
sampled DCT data. For the macroblocks directly 
generated by DCT domain down sampling, IDCT is 
performed and the result is saved in Frame Buffer B. 
Furthermore, a up sampling is performed to generate a 
reconstructed version with original size that is saved in 
Frame Buffer A.  

• Otherwise, the macroblock needs to be reconstructed. 
The DCT data is IDCTed and motion compensated if the 
macroblock is an inter macroblocks. The result is saved 
in Frame Buffer A. Therefore, the data in Frame Buffer 
A is the reconstructed macroblock with original size. It is 
then down sampled and put into Frame Buffer B.  

The data in Frame Buffer A is used to reconstruct 
future frames in the original video. The data in Frame 
Buffer B is used to generate the new residual based on the 
new motion vector. The residual is subsequently FDCTed 
and sent along with the DCT data generated directly by 

DCT domain down-sampling module to the forward 
quantizer. The rate control module controls the step size of 
the quantizer in order to achieve specified output bit rate. 
Finally, VLC encoder generates the output binary bit 
stream. 
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Figure 2 Processing flow of the transcoder 
MV Generator is responsible to generate new motion 

vector based on the motion vectors from the original 
stream. The new motion vector could be a scaled version of 
the some weighted average of the original ones. A previous 
work [1] presents some analysis regarding the optimal way 
to generating the new motion vector. 

This system represents a simplified version in which an 
open-loop approach is used. The open-loop approach may 
cause the error propagation problem on the receiver. 
However, the simplified system performs much faster due 
to the elimination of one inverse quantization process and 
one IDCT process per loop. 
 

3. ANALYSES & TESTING RESULT 
 
Primarily, the computational saving comes from the 
elimination of a number of IDCT processes. Here, one 
IDCT process represents the IDCT operations needed for 
the reconstruction of one macroblock. For 420-
chrominance compression [4], six 8x8 IDCT operations are 
invoked for the reconstruction of one macroblock. For I-
pictures, the number of IDCT operations required is 1/N2 
times originally required, where N is the down-sampling 
factor. For example, for the down-sample-by-two 
operation, it originally needs four IDCT operations for one 
output macroblock, now only one IDCT is needed. 
Considering that one DCT domain down sampling process 
cost similar computation as one FDCT, three IDCTs are 
saved, which is about 75% saving. The same applies to the 
IIII-I case in P- and B-pictures. For the IIIF-F case in P- 
and B-pictures, two IDCTs are required instead of four. 
Considering an additional DCT domain down sampling 
process, one IDCT is saved, which is about 25% saving. 
Additional saving comes from the elimination of the 
reconstruction of pixel domain version of B-pictures for 



 

 

IIIF-I and IIII-I cases. The saving is more significant for 
down-sample-by-three (N=3) and down-sample-by-four 
(N=4) cases. 

The computational saving is video sequence 
dependent. For example, if a P-picture in the original 
stream contains mostly predicted macroblocks, the 
advantages brought by the smart handling of IIII-I or IIIF-I 
case are limited. However, since this algorithm is targeting 
at transcoding high bit-rate and high-resolution video to 
low bit-rate and low-resolution video, statistics show that 
many macroblocks are coded in intra mode in the original 
high bit-rate and high-resolution video. Figure 3 shows the 
percentage of different cases for each frame in the football 
test stream. The football test stream contains 150 frames of 
size 704x480. It is coded at 6 Mbps using IBBPBB… 
structure in groups of pictures that have 15 frames. 
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Figure 3 Stacked percentage of different cases 
To test the performance of the macroblock-aware 

transcoder, we perform a down-sample-by-two operation 
on the test stream. The transcoder generates an output 
video that is coded at 1.5 Mbps with the size of 352x240. 
Two PSNR curves are shown in Figure 4. The old PSNR 
curve is obtained by using picture-level reconstruction in 
the transcoding; the new PSNR curve is obtained by using 
macroblock-aware transcoding proposed in this paper. Both 
PSNR are computed against the frames generated by 
decoding the original video and down sampling the result 
by two. A frame-by-frame quality comparison is given in 
Figure 5.  
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Figure 4 PSNR of each frame generated by the old and the 
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Figure 5 PSNR difference 

The experiment indicates that the macroblock-aware 
transcoding renders similar quality output. Note that the 
PSNR drop for I-pictures is relatively larger. This is 
exclusively due to the approximation nature of the DCT 
domain down sampling algorithm that is used in the 
implementation. 
 

4. CONCLUSION 
 
Even by reusing the original motion information, the 
processing speed to spatial resolution reduction of 
compressed video is limited by the necessity of the 
reconstruction of original frames. This paper presented an 
optimized algorithm that avoids the reconstruction of 
original frames as much as possible. Moreover, the 
proposed algorithm takes advantage of fast DCT domain 
down sampling methods as much as possible without the 
reconstruction of intra DCT version of original frames. 
Therefore, additional computational saving is achieved 
with negligible loss of quality. The algorithm is 
implemented in an MPEG video transcoding system. The 
algorithm applies to other types of compressed video as 
well, as long as motion-compensated motion estimation and 
DCT-based frequency domain compression techniques are 
used in the compression. 
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