
Predictive Modeling of Streaming Servers

Michele Covell, Sumit Roy, Beomjoo Seo
Hewlett-Packard Laboratories, Palo Alto CA

1 Introduction

In this paper, we describe our approach to deriving streaming-server saturation models from vector-labeled
training data. If a streaming server is driven into saturation by accepting too many clients, the quality
of service degrades across the sessions. The actual saturating load on a streaming server depends on the
detailed characteristics of the client requests, whether Video-on-Demand (VoD) or live-cast, the relative
popularity, and the bit and packet rates [1]. Previous work in streaming-server models has used carefully
selected, low-dimensional measurements, such as client jitter and rebuffering counts [2], or server memory
usage [3]. In contrast, we collect 30 distinct low-level measures and 210 nonlinear derivative measures each
second. This provides us with robustness against outliers, without reducing sensitivity or responsiveness to
changes in load. Since the measurement dimensionality is so high, our approach requires the modeling and
learning framework described in this paper.

We take the approach of predictive classification (saturating/non-saturating) through hidden variable
estimation, i.e. s, the L-dimensional usage levels of critical resources on the server. We estimate these L
resource-usage levels as affine combinations of m, the 240-dimensional extended measurement vector, using
critical-resource models, Rl 1 ≤ l ≤ L:

s = [R1 · · ·RL]T
[

1
m

]

For admission-control decisions, we increase the current resource-usage estimate (s) by ∆s, the additional
resource usage needed to support the extra clients. An N -dimensional vector, ∆c, counts the increase in
the number of sessions, for each client category. For our work, N = 8 corresponds to the outer product of
session type (VoD/live-cast), popularity (high/low), and bit-rate (high/low). We use Cn, 1 ≤ n ≤ N , a
linear model on the resource usage by clients:

∆s = [C1 · · ·CN ] ∆c

By combining these two resource usage estimates s+∆s and thresholding according to the desired server-
loading/reliability trade-off, we provide admission-control decisions. We do not need to know the identities
or the number of current sessions (an approach that would require open-ended bookkeeping), we just need
the requested number of additions to the session load.

We describe a new mathematical framework for deriving the models needed in our approach. Some of
the components of our framework are based on standard methods, like support-vector machines (SVMs),
projection-onto-convex-sets (POCS), total least squares (TLS), and inequality-constrained quadratic solu-
tion. We show that a novel combination of these techniques is required to solve this modeling problem.

2 Predictive-Model Derivation

We take a labeled-training approach to determine Rl, the resource models of the server, and Cn, the
client models giving the usage-profile of these resources. We use mt and ct to represent the training-
set measurement and label samples that are below saturation and mt and ct to represent those that are
above saturation. The 240-dimensional measurement vectors, mt and mt, already include noise-variance
equalization across measurement dimension and percentile filtering of the measurements over 60-second
intervals (to reduce the effect of outlier measurements). The label vectors, ct and ct, are the N -dimensional
counts of requested sessions across client category.

Our first step is to estimate Fn, a nominal saturating load for the nth client category. This is done by
finding the optimal convex saturated/unsaturated-decision boundary between {c1, . . . , cT } and {c1, . . . , cT },

1



under the constraint that this boundary touches the inscribing hypercube on all N client-category axes:
then Fn are the dimensions of that inscribing hypercube. This could be done by decision-boundary learning
techniques, such as SVMs. Since we only need Fn, we take the approach of starting from calibration data
on the N axes of our client-count sub-vector and estimate each Fn independently, to maximally separate the
saturated and unsaturated data points on the nth axis.

Once we have Fn for 1 ≤ n ≤ N , we define xt = diag{ 1
F1
· · · 1
FN } ct, an N -dimensional normalized

client-load label, giving xt for the unsaturated training set and xt for the saturated one. Using mt and xt,
the models are developed by:

• estimating st and st, the L-dimensional resource usage, as [C1 · · ·CN ] xt, a linear function of the
N -dimensional client-load vector, for xt = xt and xt = xt, respectively.

• estimating st as [R1 · · ·RL]T
[
1 mT

t

]T
, an affine function of the extended measurement vector.

• forcing maxl(st) = xt so that one resource usage will reach 100% at the saturation boundary and no
resource usage will be greater than 100% below the saturation boundary

• forcing maxl(st) ≥ 1 so that at least one resource usage is over 100% above the saturation boundary

• forcing minl(st) ≥ 0 and minl(st) ≥ 0 so that resource usage is never negative

Cl,n denotes the lth dimension of the vector Cn. We use E(n) = arg maxl Cl,n to map the client category
n to l, the resource dimension that it uses more than other resources. We alternately solve our constraint
sets, similar to POCS. We initialize by setting the number of resources, L, to the number of client types, N ;
the mapping function to E(n) = n, the identity function; the client model Ĉn to a unit vector along the nth

dimension; and the threshold for client-model change Cδ to one (allowing maximum change). The first set of
constraints creates a model of the resources from the measurement set, using weighted TLS under inequality
constraints to minimize the residual over Rl:

RT
l

[
1 · · · 1

m1 · · · mT

]
= [Cl,0 · · ·Cl,N ]

[
x1 · · ·xT

]

over 0 ≤ Cl,n ≤ 1 ∀l; CE(n),n = 1; |Cl,n − Ĉl,n| ≤ Cδ ; and ||Rl||2 ≤ R2
max.

Rmax, the maximum norm allowed for the resource model vector Rl, avoids over-training. R̂l minimizes
the TLS residual matrix under these constraints. The next step estimates the resource usage, st, for each
element in the below-saturation training set, using R̂l and mt:

sTt =
[
1 mT

t

] [
R̂1 · · · R̂L

]

projected, element-wise onto the interval [0 ||xt||]. Next, the client-usage models, Ĉn are updated, again
using TLS under inequality constraints on Cn:

[C1 · · ·CN ]
[
x1 · · ·xT

]
=
[
s1 · · · sT

]

over 0 ≤ Cl,n ≤ 1 ∀l; CE(n),n = 1; and
∣∣∣∣[C1 · · ·CN ]

[
x1 · · ·xT

]∣∣∣∣
∞ ≥ 1.

We then reduce the value of Cδ by 25% and return to the Rl-estimation step. Using this approach on our
streaming-server training data, we see convergence within 10 iterations. If Cδ is not reduced periodically, we
have seen undamped oscillations between the model pairs, due to our non-convex objective functions.

The models thus derived can be used without further reduction. Since there is no constraint on the
orthogonality [4] or independence of the resource models [5], over-estimating the number of critical resources
does not negatively impact the usage and saturation hypotheses. However, when we want to use the resource
and client models to guide our selection of hardware subsystems, minimal representation of the critical
resources maps them onto simpler combinations of distinct subsystems. This resource reduction is achieved

2



600

500

400

300

200

100

0

150010005000

V
oD

 C
lie

nt
s

Live Clients

Unsaturated
Saturated

100

75

50

25

0

4003002001000

V
oD

 C
lie

nt
s

Live Clients

Unsaturated
Saturated

250

200

150

100

50

0

5004003002001000

V
oD

 C
lie

nt
s

Live Clients

Unsaturated
Saturated

(a) popular, high-bitrate (b) unpopular, high-bitrate (c) unpopular, low-bitrate

Figure 1: State-estimation surfaces dictated by the client-resource model for mixed VoD/live-cast. The dotted
lines show the model surfaces for 97% and 102% loading on the critical resource for the client mixture.

by an extra step of estimating the number of critical resources. We examine the resource-usage profile across
all clients. If two resources “look similar enough” in terms of client usage of them, they are merged and the
estimation process is repeated on this reduced resource set. We take pairs of resources, l1 and l2 for l1 < l2,
and determine the correlation coefficients between their usage across all clients:

ρl1,l2 =

[
Cl1,0 · · · Cl1,N

] [
Cl2,0 · · · Cl2,N

]T
√
||[Cl1,0 · · ·Cl1,N ]||2||[Cl2,0 · · ·Cl2,N ]||2

We then find the resource pair that has the maximum correlation coefficient. If that ρl1,l2 is greater than
some threshold (e.g., 95%), we merge the two resources. To do this, we remap E(n) = l2 to E(n) = l1 and
we set Ĉl1,n to the average between Ĉl1,n. We reset Cδ to one and then repeat the previously described
resource and client models with L− 1 in place of L, using these values as our starting points.

3 Experimental Results

We evaluated the accuracy of our modeling work using the Helix server [6] loaded by mixing the 8 dis-
tinct client-session types. Experimental details are described in [1]. We train and test on disjoint loading
conditions. This is stricter than just using disjoint data sets: each training vector lies on one of the 8 client-
category axes, each testing vectors is off-axis. For each of our test (and training) vectors, we determined
whether the server was overloaded by observing the quality of service at the clients. Figure 1 shows a scatter

plot of the test vectors. We use the constraint equation: ||
[
Ĉ1 · · · ˆ̂

CN

]
x||∞ ≤ 1 to draw the convex surface

which the client models predict as the boundary between under-saturated and over-saturated loads. The
97%- and 102%-saturation boundary surfaces show the sensitivity of the models.

Figure 1 shows good agreement between the predicted and observed behavior on mixed-client loads.
Given the client-load vector, we can use Ĉn to predict the saturation of the server under that load and
can make admission-policy decisions based on that prediction. By using the actual client-load vectors to
draw the boundary surfaces, Figure 1 side steps the estimation of the current server load. Figure 2 includes
that current-state estimation as well as modified-load state prediction. We collapsed our results from eight
dimensions down to one, for ease of visualization. The remaining dimension is the bias between VoD and live-
cast. We use box-and-whiskers plotting to show the mean, standard deviation (vertical boxes) and extrema
(vertical lines) of our results.

3



 85
 87.5

 90

 92.5
 95

 97.5

 100

 10  20  30  40  50  60  70  80

A
cc

ur
ac

y 
(%

)

Live Workload Bias (%)

 85
 87.5

 90

 92.5
 95

 97.5

 100

 10  20  30  40  50  60  70  80

A
cc

ur
ac

y 
(%

)

Live Workload Bias (%)

(a) State Estimation (b) State Prediction

Figure 2: Server Load Estimation: State Estimation accuracy is determined by whether Rmt correctly predicts the
under-/over-saturated status of the server. Ground-truth saturation was determined by running the server under the client load
and observing whether or not it maintained the required quality of service. Similarly, State Prediction accuracy is determined
by whether Rmt1

+ C(xt2 − xt1 ) correctly predicts this bi-level value of the server saturation under the loading indicated by

xt2 . The t1 (starting-load) sample is always taken from the unsaturated data set. The t2 (target-load) sample can be taken
from either saturated or unsaturated data sets. The x-axis is the VoD/live-cast bias that was used to create the testing load.

4 Conclusions

In this paper, we described our approach to hidden-variable modeling and prediction. By estimating the
current server load from low-level measurements, we allow this modeling approach to be applied to third-
party software, without internal monitoring of the software status. By using statistical learning to derive
the resource descriptions, we create models that are tailored to the given software operating on the given
hardware configuration. Since this derivation does not require expert intuition, these well-tuned models of
the software/hardware performance can be determined without expensive manual intervention. Furthermore,
the models can be updated as more data is collected from QoS monitoring services.

We plan to examine the effects of model-adaptive reduction in the measurement vectors that are collected
from the streaming server machine and from the probe clients. The coefficients in the resource models tend
to be highly concentrated on a small number of measurement dimensions, with more than 95% of the
model-vector norm derived from less than 10% of the measurement dimensions. By recursively omitting
measurements during our calibration stage and retraining, we should be able to reduce the size of the
measurement vector, while minimizing the impact of this reduction on the prediction performance. Folding
this process into the calibration stage will allow the data reduction to be responsive to the specific streaming
server software and hardware.

References

[1] M. Covell, B. J. Seo, S. Roy, M. Spasojevic, L. Kontothanassis, N. Bhatti, and R. Zimmermann, “Calibra-
tion and Prediction of Streaming-Server Performance,” Tech. Rep. HPL-2004-206R1, Hewlett-Packard
Laboratories, 2004.

[2] A. C. Dalal and E. Perry, “A new architecture for measuring and assessing streaming media quality,” in
Passive and Active Measurement Workshop, (La Jolla CA), 2003.

[3] L. Cherkasova, W. Tang, and A. Vahdat, “Mediaguard: a model-based framework for building qos-aware
streaming media services,” in SPIE Conference on Multi-Media Computing and Networking, 2005.

[4] M. Knop, J. Schopf, and P. Dinda, “Windows Performance Monitoring and Data Reduction using Watch-
Tower,” in Proc. of the Workshop on Self-Healing, Adpative, and Self-Managed Systems, (June), 2002.

[5] Y. Feng, V. Zarzoso, and A. K. Nandi, “Quality Monitoring of WDM Channels with Blind Signal Sepa-
ration Methods,” Journal of Opitcal Networking, 2004.

[6] RealNetworks Inc., “Helix Universal Server.” http://realnetworks.com/products/media delivery.html.

4


