Time Scale Modification for 3G-Telephony Video

Michele Covell
Google Inc.
Mountain View, CA USA
Email:michelecovell @ gmail.com

Abstract— Streaming video to mobile devices like cellular
phones is an important emerging application. However, mobile,
thin clients have limited capabilities and offer restricted inter-
faces to the end-user and the Telco infrastructure has significant
technical barriers which limit the introduction of new protocols.
This paper describes our design of an end-to-end interactive
video service. We outline the technological and user-interaction
challenges of providing one typical type of interactive controls
— time-scale modification (TSM), when streaming compressed
audio-video data within the Telco infrastructure in a way that
maintains audio-video synchronization and respects the video
frame- and bit-rate contracts.

I. INTRODUCTION

Streaming video to mobile devices, such as video-enabled
handsets, opens promising new markets. This capability can
reduce the perceived duration of on-hold telephone-operation
delays, by showing the customer movie trailers or other inter-
esting visual content. Adding a video channel to a support-
desk call allows the caller to show the call-center expert
the problem. Adding a visual back channel (expressions,
gestures, posture) lessens the gap between remote and local
interactions. Being able to select and watch professionally
produced material, like movies or sports, while away from
a home or office environment greatly expands the market for
VoD. As seen with the revenue generated by the ring-back
tones and the push-to-talk markets, new Telco-services markets
can be quite large and can occur in unexpected areas.

The promise of fresh markets is one of the driving forces
behind the use of 3G wireless standards [1]. The promise
of these markets is largely unrealized to date. One major
barrier to exploring new markets in the area of telephony-
based video services is the difficulty in creating new interactive
applications that conform to Telco requirements, particularly
3GPP-enabled Telco. The primary weakness of the telephony-
oriented streaming is the lack of native support for interactive
mid-session control.

Using time-scale modification (TSM) as an example, we
propose a video streaming solution that provides support for
interactive control using existing telephony standards. Thus,
we do not require modification of the standard 3G handset,
nor do we require that any specialized application be installed.
For interactive changes in playback speed, this requires careful
modification of the audio and video timing and synchroniza-
tion. In addition, for sped-up playback, it requires dynamic
transcoding at the video server. Video transcoding itself is
a well studied topic, but much less work has been done in

Sumit Roy
Rhythm NewMedia
Mountain View, CA 94041 USA
Email: sroy @rhythmnewmedia.com

Bo Shen
and Frederic Huve
Hewlett-Packard Company
Email:bo.shen,frederic.huve @hp.com

the context of sped-up video playback which requires careful
design and implementation of dynamic sampling modification.

Note that this paper specifically addresses the problem of
providing telephony based video services, like video voice
mail, video-enabled customer support [2], etc. Internet based
video systems, like the recently introduced VCast service from
Verizon Wireless [3] or MobiTV from SprintNextel [4] use the
handset as a data terminal for packet streaming services. Thus,
they are based on a browser and media player paradigm, while
our system leverages the call based approach already available
on the phone.

In the rest of the paper, we explain our timing and synchro-
nization solutions in Section II. We study the frame rate and
bit rate transcoding solutions unique to video TSM in Section
III. We validate the algorithm designs with an implementation
of a video server with TSM services, a video demonstration
is provided in Section IV. Concluding remarks are provided
in in Section V.

II. TIMING AND SYNCHRONIZATION

Timing and synchronization issues arise in several different
forms when implementing interactive TSM controls under
the standard 3G telephony mode. In this section, we discuss
the general timing issues that arise with some of variable
bit-rate (VBR) compressed formats and highlight how this
complicates the addition of TSM controls to a 3G-telephony-
compatible video server in which video and audio packets
are often handled separately (through separate filter graphs,
for example). Finally, we describe alternative approaches to
solving these difficulties and examine the effect each approach
has on the customer experience.

A. Seek points, Sample Time, Transmission Time, and Extra
Time

Constant bit-rate (CBR) codecs, such as G.711, G.726, and
G.729a, provide an unchanging mapping between packets and
their presentation time, that is the time at which the data in
the packet is presented to the customer. Due to this constant
bandwidth usage on CBR codecs, they do not distinguish
between the presentation time and the transmission time, i.e.,
the time at which the data packet is released from the server
for transmission to the client. In contrast, variable bitrate
(VBR) compressed audio and video, such as AMR audio
and MPEG4 video, have irregular mappings between packets
and presentation times. Furthermore, video VBR codecs can

3 T T T > 3
audio —— audio ——
video - X video -

25 25

8 audio ——
video -

25

)) g
@ @ @
E E £
c g c <
S o S k]
K] 2 video speed up X" K] 2 response bl 2 video speed up
c P c T 7
g o g g 5
@ @ [
a // 5 5 /,,./ S
5 15 5 15 5 15 o
g X g g X
5 7 5 5 e
[¢] > [¢] (o] S

1 audio speed up 1 request 1 audio speed up

1 15 2 25 3 35 1 15 2 25 3 3.5 1 15 2 25 3 35

Input presentation time (s)

(a) Decoupled TSM

Fig. 1.

have large spikes in the per-frame bandwidth requirements,
especially on encodings with seek points. Video seek points
are those frames within the video stream that are independently
encoded such as I-frames. Due to the lower coding efficiency
of I-frames, a pure I-frame can require as much as 3—10 RTP
packets to transmit, even when encoded at the moderate bit-
rates typically used in 3G telephony video channels (64-384
kbps).

Since 3G clients and gateways could drop packets during
bursty transmission, the video server should smooth these
bandwidth spikes by spreading out their transmission and
sending some of the video data before its presentation time.
This is possible with file-based content (like video mail or
video snippets), since all the data packets are available to be
sent from the server to the client at any time that the server
chooses. Hint tracks in 3G files (when included) provide an
extra time value for each packet, suggesting how much before
the presentation time that the packet should be sent. However,
this may cause problems when we apply TSM as will be
discussed next.

B. Interactive Playback Speed up and Slow down

We argue that the customer should be allowed interactive
control while using the unmodified 3G-handset SIP client, with
this interactivity being provided through touch tones (DTMF)
or voice commands. The generic handset does not predict
or receive the state-dependent interpretation of these in-band
signals. Thus, it has no reason to flush its local video or audio
buffers. Any audio or video packets that are already at the
client will be played sequentially. This continuous playback
exposes the different lead times built into the transmission
timing. A client-generated DTMF requesting playback rate
change “now” is a poorly defined event. We discuss the prob-
lem using three alternative implementations: decoupled time-
scale modification (TSM), delayed-event TSM, and delayed-
synchronization TSM.

In decoupled TSM, the playback rate is changed at the
server immediately within the audio and video filter graphs,
without communication between them. In Figure 1, for exam-
ple, the client requests playback speed up from normal speed
(1.0 speed) to a 50% faster (1.5 speed) at 1000 ms. At a
schedule time of 1000 ms on the server, the video filter graph

Input presentation time (s)

(b) Delayed-event TSM

Input presentation time (s)

(c) Delayed-synchronization TSM

Server-side interactive speed up of playback for 3G handsets.

could have already transmitted data with a presentation time of
2000 ms, while audio filter graph would be transmitting data
with a presentation time of 1100 ms. Speeding up the audio by
a factor of 1.5 will change what was 900 ms (= 2000-1100)
of audio data into only 600 ms (= 900/1.5) of data. If this
reduction in audio data is not corrected, the audio and video
streams will desynchronize for the remainder of playback
by 300 ms (=900-600). Visually, the problem is shown in
Figure 1-a. The presentation times for the input (from-file)
media tracks and the output (to-client) media tracks change
to different rates as soon as the speed up request arrives. Due
to the differences in the transmission-decode mappings, this
event time corresponds to distinct presentation times on the
audio and video tracks. As shown in Figure 1-a, since the
mappings from the input-to-output presentation times changed
slopes at two different input presentation times, the after-speed
up display of audio and video are always desynchronized.

There are two different approaches to avoiding this desyn-
chronization: delayed events (Figure 1-b) and delayed syn-
chronization (Figure 1-c). With delayed events, whenever we
receive a request for a playback rate change, we immediately
apply that change to the video channel and note the presenta-
tion time at which that change was made in the video. Let us
say that the video presentation time noted in this case is 2000
ms. We then create a delayed rate-change event for audio, for
the equivalent presentation time in the audio stream. Thus, the
audio modification was delayed: It is not applied immediately
when the user requests the change. At the client, the display
remains correctly synchronized throughout the rate change
process but there is a delay before the rate change is seen or
heard. Continuing with the example above, this delay would
be 900 ms. This approach has the advantage of maintaining the
synchronization throughout, but the disadvantage of seeming
sluggish in responding.

With delayed synchronization (Figure 1-c), we apply the
playback rate modification immediately to both audio and
video channels, noting the presentation time on each. As noted
above, unless corrected further, this results in the audio being
played back at the client at an earlier time than the corre-
sponding video. To avoid this long-term desynchronization,
the audio filter graph inserts the correct amount of silence in
its output stream to resynchronize. Again using the example

above, the audio filter graph would insert 300 ms worth of
silence. At the client, immediately after the request for speed
up, the audio would go silent for 300 ms (corresponding to
the inserted silence), giving an initial desynchronization where
the audio was played late relative to the video by 300 ms.
Then, over the course of the next 600 ms, the audio and
video would gradually resynchronize, as the audio played back
faster than real time while the video continued to play at real
time. After 900 ms, synchronization would be restored and
the video would begin to play faster than real time. When
slowing down playback, the “silence” is inserted into the video
channel. That is, on receiving a request to slow down, the
video timestamps are immediately offset by the amount of
desynchronization that would have otherwise resulted. In all
cases (speed up, slow down, seek), this approach temporarily
desynchronizes the audio and video playback but corrects
for that desynchronization as early as the data transmission
allows. The advantage is that the user interface is quick
and responsive. In our informal tests, the responsiveness of
the interface is much more important than the temporary
desynchronization.

The only other issue that must be addressed in playback
speed modifications is how the server handles hinted files
when streaming them at a changed speed. This becomes an
issue since hinted files include an explicit suggestion for the
extra time. When we speed up the playback, our presentation
times change, so that they are closer together. If we use the
unmodified extra times with the sped-up presentation times to
calculate our transmission time, we will often result in “cross
over”: that is, the transmission time will not be a monotonic
increasing function of packet number. Whenever the delta
transmission time is negative, the change in extra time from
one packet to the next might be large enough that the second
packet nominally should be sent first. To avoid this reordering
or clumping of packets, we scale the extra time by the same
sped-up multiplier as we use on the presentation times for
rates that are faster than real time.

In contrast with sped-up playback, we do not change the
extra time when there is slower-than-real-time playback. Slow-
ing the playback down spreads the packets out more widely
than normal, so there is no issue of crossing over as there is
with speed up. We could increase the extra time to further
smooth the transmission rate. But there is no need, since
the transmission rates on the slowed playback will always be
below those that have already been within contract for regular
playback. Furthermore, there is a disadvantage to expanding
the extra time, i.e., a longer period of desynchronization on any
subsequent playback changes due to this artificially expanded
extra time. Since there is no requirement for the expansion and
there is a disadvantage to the expansion, we instead use non-
uniform scaling of the extra time, compressing it for faster-
than-real-time playback and using it unchanged for slower-
than-real-time playback.

t,[n] R

b Ko
—
B ho R

|
o

td[n] P1

SRR

Wl B B b, R s Bl R

Fig. 2. Dynamic trans-framing.

III. DYNAMIC SAMPLING MODIFICATION

Existing TSM filters such as SOLA [6] provides audio
playback speed control by estimating local periodicity in the
audio and removes or inserts integer number of that period,
with cross-fading to avoid audible clicks.

The sampling modification for video is more complicated
since the use of the telephony side of the 3G network imposes
strong constraints on the channel: we must remain at or below
our contracted frame and bit rates for the session.

Slower-than-real-time playback is not an issue, assuming
the content sampling rate conforms with the bit- and frame-
rate contracts of the 3G channel. The contracts for frame
and bit rates apply to the display frame and bit rates, which,
for slower-than-real-time playback, are lower than the content
sample and bit rates (due to the slow down). Similarly, seeking
also is not an issue: We allow additional extra time to be
inserted into the video transmission by “freezing” the video if
needed and thus avoid over-budget spikes during the seek.

In contrast, faster-than-real-time playback will violate
frame-rate and bit-rate contracts, unless we explicitly decrease
the display frame rate (trans-framing) and bit rate (trans-
rating). We must reduce the content sample and bit rates to
avoid having the sped-up display frame and bit rates exceed
our contract. The approach taken to trans-framing and trans-
rating must be both dynamic and computationally efficient. It
must be dynamic since the target speed up rates are being
controlled in an interactive manner by the customer. This
means that we cannot simply transcode offline, but must
provide on-line adaptation. It must be computationally efficient
to maintain the capacity of the service provider’s machines to
provide economical services.

We propose a two-stage approach to this problem of
transcoding downward during faster-than-real-time portions:
first trans-framing, followed by trans-rating.

A. Dynamic trans-framing

We have taken the approach of allowing short durations
of desynchronization between the audio and video, in order
to allow more computationally efficient trans-framing. For a
contracted frame rate of 7., our approach introduces up to 1/7,
seconds of desynchronization in the client display . This degree
of desynchronization is visible, but tends to be acceptable since
it is not a sustained desynchronization.

Our approach to trans-framing is to decode all of the video
frames as they are received from the file reader. We do this full
decode since the video streams are typically encoded with very
long GOP sizes (24-75 frames). By decoding as we receive
the frames, we are able to smooth out that portion of our
computational load across time and minimize the added delay
that on-demand decoding would otherwise induce.

Using our algorithm, we determine when we need to drop
a video frame in order to provide the sped-up playback
without violating our contracted frame rate. When a “drop
frame” event is triggered, we at most re-encode one frame
after the dropped frame. Since we re-encode this frame, all
following frames that are differentially encoded can be used
drift-free without re-encoding. Thus, we re-use the original
encoding of most of the frames, thereby minimizing both
our computational load and our “second-generation” visual-
quality degradation. The re-encode process can take on a more
efficient approach such as [7]. It uses motion tracking across
frames so that the motion information of the frame after the
dropped frame can be estimated without another full and costly
motion estimation process.

The computational saving of being able to do isolated re-
encoding depends on s, the multiplier of the playback rate.
At playback rates that are faster than real time, up to twice
real-time (1 < s < 2), (s — 1) x r. out of r. input frames are
re-encoded, corresponding to (s — 1) X 7, out of (2 —s) X r,
output frames. For example, when the customer is running the
video at 50% faster than real time (s = 1.5), then 1 out of
3 input frames are re-encoded, corresponding to 1 out of 2
output frames.

Selection of the actual frames that are removed is com-
plicated due to two factors. First, the requested speed-up
factor s is known, but can be changed dynamically. Moreover,
the content sampling rate can be non-uniform in both MP4
and H.263 video. The actual content sample spacing is only
known when the frame data is received. In contrast, the
maximum allowed frame rate is part of the service contract,
hence constant and known. Figure 2 illustrates our approach
to deciding when to drop frames. When we get new frame
data, we compute the desired presentation time, t4[n], using
the input presentation-time offset from the previous frame and
the desired presentation-time of the previous frame. We then
compute the earliest allowed presentation time for the output
frame:

td[n] = td[n — 1] + Atd[n]
Atgln] = (tim[n] —tin[n —1])/s
towln] = towln — 1] + max{Ataln], ric}

where t;,[n] is the original (input) presentation time of the
n** sample and t,,[n] is the final output presentation time of
the n'* frame.

Whenever t,,:[n] is greater than or equal to t4[n + 1], the
nt? frame is dropped by re-encoding the (n + 1)** frame. In
Figure 2, this results in frames Py, Py, and I;5 being dropped.
The frames following the dropped frames are re-encoded, to

removed dependencies on the dropped frame. For example,
the re-encoded frame Py uses I3 as its reference.

We modify the above approach slightly to increase our
computational efficiency while maintaining all of the original-
file seek points. If the frame following the dropped frame is an
I frame (e.g., Iy), we do not re-encode, since this frame does
not depend on the dropped frame (e.g., Pg in Figure 2). If the
dropped frame is an I-frame, we re-encode the following frame
as an I-frame. In Figure 2, this is shown when I is dropped
and Pj3 is then re-encoded as I/ 5. This choice on re-encoding
again reduces our computational load, since I-frame encoding
takes less computation, by not requiring motion-estimation
searches. This I-frame encoding keeps the seek point in the
middle of what would otherwise become a doubly-long GOP.

The above description seems to introduce a frame of delay
into the transmission of the video frames, since the previous
frame must be held until we get the next frame, to see if
ta[n + 1] is less than ¢y¢[n]. This is not the case: there is
no additional output-observable delay due to this dependency.
The video packets are being released from the file reader
according to the (possibly hinted) timing indicated by the
desired frame placement. Once t,,:[n] is known, we can
simply hold that frame for another t,,:[n] — t4[n] seconds.
This offset is the same as the offset that we are adding to the
desired presentation time, so the release timing is correctly
adjusted from the desired. If a second frame arrives during
the delay period, we know we should re-encode. If it does not
arrive during that period, we do not need to.

The only complication to this drop-timing rule occurs for
multi-packet frame encodings. In that case, we might delay
the first packet of a frame by ¢y:[n] — tq[n] seconds and
receive one or more additional packets, all corresponding to
the same (n'") frame. In this case, assuming we do not see
any packets from the (n + 1)** frame during that delay, we
go ahead and release each of the packets for the n? frame, as
their release time arrives. After releasing the first packet of the
frame, we do not allow removal of that frame. If we find on
a later packet that we should have dropped the nt” frame, we
ignore this evaluation, since we have already partially released
the frame. Typically, this will result in the (n + 1)** frame
being dropped (due to ¢ [n + 1] > tg[n + 2]) and a slightly
larger desynchronization between the audio and video during
the (n + 1) frame period. We have not seen a case where
this extra de-synchronization is overly objectionable.

Computationally, this approach to trans-framing requires a
full decode plus re-encoding of (at most) . X min{1, (s—1)}
frames per second.

B. Dynamic trans-rating

Once we have reduced the display frame rate to meet the
contracted level, we may still need to adjust the bit rate
to the contracted level. On sped-up playback, the frame-
rate reduction will help to reduce the bit rate, however, if
the original content was encoded using the full contracted
bandwidth, it typically will not reduce it far enough to conform
with the contracted rate.

The reason for the high bit rate is the increased frequency
of I-frames within the sped-up stream. If the original stream,
at the contracted frame rate, had an I-frame once every
Ngop frames, then the output stream will average an I-
frame once every Ngop/s frames, due to our approach of
maintaining seek points. Intra-coded I-frames require more
bits to encode than inter-coded P-frames, when encoding to
the same perceptual quality. The ratio of the bits required for
an I-frame and for a P-frame is g, the inter-frame coding-
efficiency gain and can vary widely depending on the con-
tent.If we start from an original video stream encoded at the
contracted maximum b, bits and r. frames per second, with
a P-frame coding efficiency of g, then it will (on average)
use b, bits per P-frame and g x b, bits per I-frame, where
by = bcNcop/(rc(9 — 1 + Ngop)) In the sped-up frame-
rate-adapted stream, each frame uses the same number of bits
but, due to the more frequent I-frames, this uses up a total bit
rate bC(S(g — 1) + NGOP)/(Q -1+ NGOP)-

We can use this formula, along with a running estimate
of the inter-frame coding gain (g) and the I-frame separation
(Ngop) for this sequence, to estimate how much above the
contracted bit rate the trans-framed sequence will be for any
requested speed-up factor. These two estimates (¢ and Neor)
are easily estimated using a single-pole IIR filter and the
observed values from the sequence. We start from initial
estimates of § = 3 and Ngop = 3r. (for 3 second long
GOPs) and update the estimates each time we receive a new
I-frame. To ensure a reasonable estimate, we limit the filter
values so that 1 < g < 8 and r, < NGop < bre.

With these estimates, we reduce the lgit rate by a factor
of boyer = (s —1)(g —1)/(s(§ — 1) + Ngop). On our test
material, during twice real-time playback, byye, ranges from
4% to 20%, with an average of 10%. Given this estimated
target bit rate, we can use solutions such as [8] to carry out
an efficient trans-rating in real time.

IV. EXPERIMENTAL RESULTS

In this section, we describe some example services that have
been implemented to demonstrate and validate our approach
to providing video services within the 3G telephony network.
Since the audio/video synchronization is the key issue in-
vovled in TSM, the result is best shown through the video
demonstration [9] (MPEG-2 player required for viewing). In
the demonstration, we show streaming to the video phones
that are 3G-standard compliant. These video phones use SIP
for session initiation/negotiation and RTP/UDP for streaming
transport. They encode and decode G.711 p-law audio and
H.263 video.

The video phone first places a call to our video-enabled
SIP server. The server uses the information embedded in
the client-request URI to select the application logic for the
client session, in this case the Video-Messaging service. The
demonstration clip shows the coordinated use of audible and
visual prompts, using the video channel to show the customer
a menu of DTMF-to-function mappings. This menu is shown

at the same time as the mappings are read aloud, so that audio-
only customers can also be served. Next, the client selects to
view the first available message by transmitting the appropriate
DTMEF.

The server can stream MPEG-4 simple profile or H.263
baseline video and AMR or G.711 p-law audio to the terminal.
For the demonstration, we stored 3GPP compliant files that
contain time multiplexed H.263 video and AMR audio. Since
the EyeBeam softphone does not support AMR (as indicated
during call initiation), the server provides real-time trans-
formatting for the audio.

The customer then skips forward to the desired location
within the multimedia clip by sending DTMFs. We also show
the ability to skip backward. Next, we demonstrate the ability
to speed-up the clip while maintaining audio and video syn-
chronization. The need for SOLA is shown by disabling this
processing temporarily. Finally, we resume normal playback
speed, and then jump to the next Video-Message.

All playback control is implemented on the server back-end
with no modification being made to the generic SIP clients.
This demonstration clip proves a working implementation of
the algorithms discussed in the previous section.

V. CONCLUSION

We have proposed an approach to providing TSM controls
within a SIP video server in a way that maintains synchronized
playback, no matter what type of skew has been introduced
between the streaming of the audio and video tracks (such
as is commonly done for bandwidth smoothing). We have
also proposed an approach to remaining within our frame-
and bit-rate contract, even during accelerated playback, by
dynamic trans-framing and trans-rating at the server. All of
this work is to support interactive control of 3G video services
using the telephony-oriented control stack. By doing so, we
inherit the bandwidth and latency guarantees provided for
telephony. Most importantly, we provide seamless intermixing
of telephony calls and video services.

REFERENCES
[1] 3GPP, “3GPP TS 26.234 Transparent End-to-End Packet
Switched Streaming Service (PSS): Protocols and Codecs.”

http://www.3gpp.org/ftp/Specs/html-info/26234.htm, 2005.

[2] Collab, http://www.collab.pt/3100.htm.

[3] http://www.verizon.com

[4] http://www.sprintnextel.com

[5] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation Proto-
col.” RFC 3261, http://www.ietf.org/rfc/rfc3261.txt.

[6] S. Roucous and A. Wilgus, “High quality time-scale modification for
speech,” in ICASSP, 1985.

[7] J. Youn, M-T Sun and C-W Lin, “Motion vector refinement for high-
performance transcoding,” IEEE Trans. On Multimedia, vol. 1, no. 1, pp.
30-40, Mar. 1999.

[8] P. A. Assuncao and M. Ghanbari, “A frequency-domain video transcoder
for dynamic bit-rate reduction of MPEG-2 bit streams,” IEEE Trans. On
Circuits and Systems for Video Technology, vol. 8, pp. 953-967, Dec
1998.

[9] Video Demonstration, “Interactive 3G~ Video Messaging,”
http://www.hpl.hp.com/personal/Bo Shen/3GVideoMessaging.mpg.

