
Implementation of an Algorithm for Fast Down-Scale
Transcoding of Compressed Video on the Itanium �

Sumit Roy
Media Systems Architecture Group

Client and Media Systems Laboratory
Hewlett-Packard Laboratories

Palo Alto, CA 94304

sumit@hpl.hp.com

Bo Shen
Streaming Media Technology Group

Client and Media Systems Laboratory
Hewlett-Packard Laboratories

Palo Alto, CA 94304

boshen@hpl.hp.com

ABSTRACT
With the introduction of the next generation wireless net-
works, mobile devices access increasingly more media-rich
content. However, a key factor that prevents a mobile de-
vice from accessing multimedia content is that it does not
have enough display real estate to render the content that
is traditionally created for the desktop web client. More-
over, the wireless network typically has lower bandwidth
compared to a wired network of the same epoch. There-
fore, a transcoder is needed somewhere in the network to
transform multimedia content to the appropriate form fac-
tor and bandwidth requirement. This paper introduces an
extremely fast transcoder. Compared to previous methods,
additional 30 - 44 % of computing power is saved while the
quality of transcoding is maintained. This saving in com-
puting resources maps into the benefit that more concurrent
sessions can be supported on one transcoding device. The
computational power is saved by exploiting some of the key
features of the new Itanium

�

Processor Family.

Categories and Subject Descriptors
C.1.1 [Single Data Stream Architectures]: RISC/CISC,
VLIW architectures; C.4 [Performance of Systems]: Mea-
surement techniques

General Terms
Algorithms, design, measurement, performance

Keywords
Video transcoding, Itanium

�

, MPEG-2

1. INTRODUCTION
The Internet brings heterogeneous devices together. For rich
media transmission over the wireless Internet, content adap-
tation is a key issue. The original content may have been
coded at higher resolution and higher bit rate, say 720×480

at 2 to 8 Mbps for DVD quality, or 320 × 240 at 1.5 Mbps
for desktop clients connected to the Internet through a T1
line. However, due to the characteristics of mobile wire-
less communication ie. low bandwidth channel and limited
display real estate, a 100 kbps video at a lower resolution
is desired. Current 3G wireless communication is trying to
provide a 128 – 384 kpbs communication channel. There-
fore, a transcoder is needed to adapt the content to the
appropriate size and bit rate.

A straightforward method to perform this transcoding is to
decode the original stream, down sample the decoded frames
to a smaller size and re-encode to a lower bit rate. Consider-
ing a typical CCIR601 MPEG-2 video, it takes the full power
of a 400 Mhz CPU Pentium class CPU to perform real-time
decoding. Encoding is even more expensive, which makes
the straightforward method non-practical. From a price per-
formance point of view, it is expected that one transcoding
unit should be able to support as many concurrent sessions
as possible. This would for example permit a transcoding
service to support multiple different streams in near real
time scenarios. Therefore, it is extremely worthwhile to de-
velop fast implementations that reduce the CPU load for
such kind of transcoding session.

This paper describes our implementation of an optimized
video transcoding algorithm using a compressed domain ap-
proach. Specifically we show the performance advantages of
using the multimedia instruction set of the new Itanium

�

Processor Family (IPF) from Intel, as well as how we used
some of the novel features of these processors.

The paper is organized as follows. In Section 2, we present
background on the compressed-domain video transcoding al-
gorithm. The IPF features used in the optimized implemen-
tation are described in Section 3. Detailed performance re-
sults are presented in Section 4. We conclude with directions
for future work in Section 5.

2. TRANSCODING SYSTEM
Down-scale transcoding is defined as generating compressed
bitstream for down scaled video of size N/n×N/n (n =
(2, 3, 4)) given the bitstream for original video of size N×N.
The conventional transcoding approach requires the original
video be decompressed and motion vectors recomputed for
the downscaled video followed by re-encoding in a conven-

Frame

Memory

Frame

Memory

Quantizer
Inverse

+
−

Frame

Memory DCT

P
re

di
ct

iv
e

fr
am

e

Quantizer

(Q)

IDCT

Compensation

Motion

Encoder

VLC

Output

Buffer

Rate Control

Decoder
VLCBuffer

step size

Motion

Compensation

motion vector

D
ec

od
ed

 d
at

a

Input data

MV
Generator

Inverse
Quantizer IDCT

Down
Scale

new motion vectors

Figure 1: Hybrid Transcoding System.

tional video encoder.

Video compression standards such as MPEG [1], H.26x em-
ploy motion compensated prediction to exploit the tempo-
ral redundancy to achieve a lower bit rate. Motion estima-
tion is often employed in the motion-compensation process;
however, motion estimation process is a compute-intensive
operation and typically is at least 60% of the workload of
the video encoder. Therefore, recomputing the motion vec-
tors renders the problem of video downscaling from a com-
pressed video bitstream as a computationally intensive task
and may place a heavy burden on a transcoding server that
has to generate MPEG or H.26x bitstreams for the down-
scaled video in real time.

Figure 1 illustrates the processing flow of a compressed-
domain transcoding system for MPEG video [2]. In the
transcoding system, the spatial frames are reconstructed and
downscaled in the spatial domain but the motion vectors are
estimated directly from the existing motion vectors in the
original sequence. Therefore, a costly motion estimation
process is saved. Similar systems can also be developed for
the downscaling of H.261 and H.263 bitstreams.

The MV Generator module is responsible for generating the
new motion vector by averaging the existing motion vec-
tors. In addition, the coding type of the output macroblock
is also decided using the coding types of the input mac-
roblocks. For instance, in down-scale-by-two case, there are
four input macroblocks involved in generating one output
macroblock. If most of the input macroblocks are intra, the
output macroblock is coded as intra. On the other hand,
if most of the input macroblocks are predicted, the output
macroblock is coded as predicted, in which case, the out-
put macroblock is constructed using the new motion vector
produced by the MV Generator module.

Moreover, if the output macroblock is decided to be pre-

dicted, but there is one intra macroblock, one skipped mac-
roblock among the input macroblocks, we view the intra
macroblocks and skipped macroblocks as predicted mac-
roblocks with zero-valued motion vector. Note that the
skipped macroblocks in bi-directionally predicted frames in
MPEG or H.263 may have non-zero-valued motion vectors.

The bit rate of the output bitstream is controlled by the rate-
control module. The rate-control module also uses the com-
pressed domain information existing in the original stream.
It first estimates the number of bits available to code the
picture then computes a reference value of the quantization
parameter based on buffer fullness and target bit rate. Fi-
nally, it derives the value of the quantization parameter from
the generated reference according to the spatial activity of
the macroblock. The spatial activity is derived from the
DCT coefficient activity in the input macroblocks. There-
fore, there is no need to compute a mean square variance
which consumes more CPU cycles.

A simplified version, similar to the transcoding system de-
scribed above is illustrated in Figure. 2. This system rep-
resents a simplified version in which an open-loop approach
is used. The open-loop approach may cause an error prop-
agation problem on the receiver. However, the simplified
system performs much faster due to the elimination of the
one inverse quantization process and one IDCT process per
loop. The PSNR results in Section 4 show that the overall
noise added with these optimizations is well within 0.6 dB
for this system, when compared to a traditional pixel do-
main transcoding approach.

3. ARCHITECTURAL FEATURES OF THE
ITANIUM

�

PROCESSOR FAMILY
The Itanium

�

Processor Family (IPF) is an implementation
of the IA-64 architecture [3]. It features a new processor
architecture technology called EPIC, or Explicitly Parallel
Instruction Computing. Multiple instructions are combined

Input
Buffer

IDCT
VLC

Decoder
Inverse

Quantizer
Frame

Buffer A

Motion
Compensation

Down Sampling

motion vector

FDCT

-

Frame
Buffer B

Motion
Compensation

Forward
Quantizer

Rate Control

VLC
Encoder

Ouput
Buffer

MV
Generator

new motion vector

Figure 2: Compressed Video Transcoding system

together into large instruction words called bundles. If the
processor implementation has enough functional units and if
the instructions in the bundle do not have any dependencies
on each other, all of them can be executed at the same time.

3.1 Instruction Bundles
The Itanium

�

is the first implementation of this processor
architecture. In this case, each bundle consists of three in-
structions. If there is a dependent instructions in a stream
are separated by stopbits. This guarantees that the proces-
sor only issues independent instructions in a cycle. For the
Itanium

�

, the issue width is two bundles, which means that
a maximum of six instructions can be issued per cycle.

To support multiple instructions per cycle, the processor
has numerous functional units. In the Itanium

�

imple-
mentation, there are two memory units, two integer ALU
units, two floating point units, and three branch units. The
mapping of instructions in a bundle to a functional unit is
indicated via template bits in the bundle. If the sequence of
independent instructions in the bundles results in an over-
subscription of the functional units eg. three integer arith-
metic instructions are issued consecutively, a so called split-
issue is cause. The remaining instructions are issued in the
next cycle. The processor will not make any attempt to
reorder the instruction stream to avoid split issues. The
functional units of a specific type are also not completely
symmetric [4]. For example, multimedia multiply instruc-
tions can only be done on integer ALU unit 0.

3.2 Multimedia Instructions
Intel introduced the MMX instructions in the Pentium fam-
ily of processors. The technology is based on the Single-

Instruction, Multiple-Data concept from parallel processing.
Multiple small data items are packed into a 64-bit register
and all processed in a single instruction. The initial set of
57 instructions operates on integers that are 8, 16, or 32
bits wide, and are known as the MMX extensions. Early
implementations of this architecture multiplexed the MMX
registers on the Floating Point registers and state.

The SSE instructions are introduced with the Pentium III
family. They allow packed IEEE compliant single precision
floating point arithmetic on four operands at a time. Some
additional packed integer operations are also introduced.

The IA-64 has multimedia instructions which are semanti-
cally equivalent to the MMX and Streaming SIMD (SSE) in-
structions introduced with the Intel Pentium and Pentium
III [5]. However, there is no special multimedia register
set on the Itanium

�

. All general purpose registers can be
treated as eight 8-bit, four 16-bit, or two 32-bit elements.
Packed integer arithmetic instructions are particularly use-
ful while processing streaming media, since data tends to
be accessed in blocks, and each datum can be processed in-
dependently. Most of the multimedia ALU instructions for
the Itanium

�

can either be executed on the M-units of the
I-units. Exceptions include the shift, pack, and multiply
instructions, which can only be dispatched to the I units.

One of the limiting factors in using the MMX and SSE in-
structions on Pentium class processors was the limited size
of the MMX register set, only 8 in the Pentium III imple-
mentation. The Itanium

�

on the other hand has a register
set of 128 64-bit registers which could be used to completely
process an image block without any looping.

4. EXPERIMENTAL RESULTS AND ANAL-
YSIS

The code was compiled using the gcc compiler, and results
were obtained on a dual processor 800 MHz Itanium

�

work-
station, running the RedHat Seawolf release of the Linux
operating system. Data was collected for two different ref-
erence MPEG-2 sequences, flower-garden and football. The
football test stream is of size 704×480 pixels and is coded at
6 Mbps. It has 150 frames. The flower-garden test stream
contains 450 frames of size 704 × 480 pixels and is coded
at 4 Mpbs. In the experiments, down-sample-by-two and
down-sample-by-four operations also reduce the bit rate by
a factor of 4 and 16 respectively.

4.1 Pro£ling Data
The transcoder code was initially compiled without opti-
mization at -O0 to obtain the baseline performance. The
program was then recompiled with the compiler optimiza-
tion set to -O3. Table 1 shows the ten procedures that take
the most time as output determined by gprof(1) (divdi3
is a library routine).

Table 1: Output of gprof(1) for code compiled with
-O3

% time seconds calls name
26.78 25.37 1188000 fdct
13.91 13.18 divdi3
11.21 10.62 5537394 recon comp
8.31 7.87 17843632 idctcol
4.57 4.33 31550362 flushbits
4.54 4.30 991488 quant non intra
4.43 4.20 600 getMBs
4.20 3.98 2230454 addblock
2.97 2.81 17843632 idctrow
2.38 2.25 600 down2PixelPic

Based on the profiling data the following code is replaced
with a multimedia instruction optimized version:

1. Forward DCT (fdct) - The optimized FDCT code is
adapted from the mjpeg beta1a package, which is de-
rived from [6].

2. Motion Compensation (recon comp) - This uses an
adapted motion compensation code from Aaron Holtz-
man’s mpeg2dec library [7].

3. Prediction (predict) - This also uses routines from the
same Motion Compensation code optimization.

4. Downsampling (down2PixelPic) - The subsampling code
was developed in-house.

The initial implementation consisted of mapping the original
IA32 optimized assembly code to the equivalent IA64 code.
When required, stopbits were inserted in the code sequence
to maintain the dependencies between instructions. The re-
sults shown only use 10 registers explicitly, r20 – r30. The
compiler further uses registers r14 – r19 as address registers.

Table 2: Output of gprof(1) for code compiled with
-O3 and Multimedia optimized FDCT, Motion Es-
timation, Prediction, and Downsampling

% time seconds calls name
19.17 11.91 divdi3
11.95 7.43 17843632 idctcol
6.93 4.31 31550362 flushbits
6.70 4.17 991488 quant non intra
6.59 4.09 600 getMBs
6.37 3.96 2230454 addblock
4.56 2.84 17843632 idctrow
3.96 2.46 forward dct row1
3.08 1.91 1761505 MC put y
2.44 1.51 792000 var sblk

Table 2 shows the profiling results after the FDCT, Mo-
tion compensation, prediction, and downsampling multime-
dia optimizations have been applied (forward dct row1 and
MC put y are multimedia optimized routines).

4.2 Computational Speedup
Figure 3 shows the computational time for both down-sample-
by-two operation and down-sample-by-four operation on the
two test streams. The sppedup is computed with respect to
the case when no optimization is used in the compiler, O0.
The default optimization level for gcc is O1, and this alone
provides a speedup of four in all cases. The speedup for an
optimization level of O2 lies between 4.6 - 5.2, depending on
both the input sequence and the down-sample ratio. There
is no change in the performance when going from O2 to O3.

Table 3 shows the percentage improvements when adding
multimedia optimized routines for the FDCT (F), the Mo-
tion Compensation (MC), the Prediction (P), and finally
the Down sampling D. Note that the current implementa-
tion uses MMX optimized down sampling code for the down-
sample-by-two case only.

From the table it can be seen that the overall execution time
can be reduced by a factor of 30 - 44 % from the default
optimization level of O1.

4.3 PSNR Comparison
The use of multimedia instructions can lead to round-off er-
rors, for example when single precision floating point code is
replaced with an integer version. Hence we show the results
of the PSNR difference for the two sequences in Figure 4
and Figure 5 when each optimization is applied. The ref-
erence frames were obtained by downsampling the decoded
input stream. In the figures, plot -O3 has only compiler op-
timizations, F has multimedia instruction optimized FDCT,
F + MC adds optimized Motion Compensation, F + MC +

P further adds optimized prediction, and finally, F + MC

+ P + D adds optimized downsampling. In each case the
video sequence is reduced by a factor of two in size, and
factor of four in bitrate. It is seen that the additional noise
is negligible for all optimizations.

4.4 Itanium
�

Speci£c Optimizations
Figure 6 shows a part of the FDCT MMX code optimized
IA32 code derived from [6]. The IA64 version of the code de-

1

2

3

4

5

6

7

8

O0 O1 O2 O3 F F + MC F + MC +P F + MC + P + D

S
pe

ed
up

Optimization

Flowergarden/2
Flowergarden/4

Football/2
Football/4

Figure 3: Speedup due to various Multimedia Optimized code blocks on IA64

Table 3: Percentage Reduction in Execution Time with Multimedia optimized FDCT, Motion Estimation,
Prediction, and Downsampling

Optimized Baseline
Procedures O0 O1 O3

F 81.24 - 83.06 26.19 - 33.76 8.13 - 22.32
F+MC 82.08 - 84.32 29.49 - 37.75 12.24 - 27.01

F+MC+P 82.20 - 84.49 29.93 - 38.97 12.79 - 28.43
F+MC+P+D 82.27 - 85.72 30.23 - 44.15 13.15 - 34.51

rived using a simple translation scheme is shown in Figure 7.
In the actual implementation, this pass was accomplished by
wrapping the original IA32 code into macros and rewriting
the macro definitions for IA64.

Line 1. shows that the simpler load/store primitives of the
IA64 instruction set require some code expansion when em-
ulating enhanced addressing formats. This is even more
apparent in the code expansion for Line 2. For the code
fragment shown, 9 IA32 operations were translated to 12
IA64 operations. Due to the dependencies between state-
ments, no fewer than 7 stopbits had to be inserted. This
leads to an underutilization of the functional units of the
IA64.

The code fragment shown in Figure 8 shows one particular
rescheduling of the code. In this case, the following opti-
mizations were possible:

1. Reorder 5. since there is no dependence. This also
hides the 2 cycle bypass latency from the load of reg-
ister r30 to its use in statement 7.

2. Execute 1a. and 2a. in parallel, since there is no de-
pendence.

3. Execute 1b. and 2b. in parallel, since there is no
dependence.

4. Remove 3a. r22 holds the old value of r25, by rewriting
6. we achieve the same semantics and save a statement
(r22 is not used in subsequent code).

5. Remove 7. r21 holds the old value of r30, by reordering
statements 8. and 9. we achieve the same semantics
with fewer statements and stopbits.

The overall result is that we have reduced the number of
instructions to 10 and the number of stopbits to 5. This
gives us greater concurrency and shorter code paths. De-
pending on the bundling of the instructions, one must also
consider the latencies between producers and consumers of
variables [3].

The optimizations described above were applied to the com-
plete FDCT code. The FDCT code was converted into a
micro-benchmark for this experiment, so that the effect of
the code rescheduling could be isolated. Table 4 shows the
results from three implementations, measured using the Per-
formance Measuring Unit (PMU) on the Itanium

�

. The
Perfomance Metric uses the nomenclature defined in [3].
Original refers to the translated IA32 code, Code Path is
a first attempt at optimization by reducing the length of
the code path. The number of IA64 instructions retired has
been reduced by 20 %. A primary source of this reduction
is to use the postincrement form of load/store instructions.

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120 140 160

P
S

N
R

 d
el

ta
 (

dB
)

Frame Number

O3
F

F + MC
F + MC + P

F + MC + P + D

Figure 4: PSNR difference for different levels of optimization (football sequence)

.

.

.

1. movd mm5, [INP+12];

2. punpcklwd mm5, [INP+8];

3. movq mm2, mm5;

4. psrlq mm5, 32;

5. movq mm0, [INP];

6. punpcklwd mm5, mm2;

7. movq mm1, mm0;

8. paddsw mm0, mm5;

9. psubsw mm1, mm5;

.

.

.

Figure 6: IA32 MMX FDCT code fragment

This save extra address calculation operations like shown in
1a. and 2a. in Figure 8. However, the execution cycles has
only reduce by about 10 %. Table 5 shows some metrics
derived from the raw PMU data. It is seen that the Instruc-
tions Per Cycle (IPC) actually decreases from the Original

implementation to the Code Path implementation. The La-

tency implementation actually considers the latency between
dependent instructions while scheduling them. For example,
using postincrement load/stores introduces a 2 cycle latency
on the use of the new value of the base register. Regular ad-

dress calculations with adds have a one cycle latency to the
use of the base register only if they were assigned to an
M-unit. By taking such restrictions into account, one can
increase the IPC as well as reduce the cycles lost due to
issue limits. It is to be noted that a large number of cy-
cles is still lost due to this limit. This would suggest that
using more registers for the current code is unlikely to pro-
vide a large improvement. The current implementation uses
1287 instructions, with approximately 597 stopbits per 8×8
FDCT. The original implementation used 1719 instructions,
with 1160 stopbits.

Table 5: Derived Metrics from Performance Coun-
ters

Implementation Derived
Original Code Path Latency Metric

0.79 0.70 0.93 IPC
6788.4 3804.3 3447.2 Issue Limit cycles

5. CONCLUSION
This paper presents the results of using some Itanium

�

Pro-
cessor Family architectural optimization on a video transcod-
ing system. Using multimedia instructions provides an in-
crease in the speedup obtained from the compiler alone by
about 30 - 44 %. Results on exploiting the Explicitly Paral-
lel Instruction Computing features of the Itanium

�

suggest
an additional improvement of nearly 40 % for some of the
core routines in the transcoder. Much of the improvement
comes from reducing code path lengths and correctly han-
dling instruction pair latencies. It is also found that the
number of functional units in the Itanium

�

are a limiting
factor for some of the code. Our future work will explore
adding these performance enhancing features to other parts

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150 200 250 300 350 400 450

P
S

N
R

 d
el

ta
 (

dB
)

Frame Number

O3
F

F + MC
F + MC + P

F + MC + P + D

Figure 5: PSNR difference for different levels of optimization (flower-garden sequence)

Table 4: Sample Output from Performance counters on Itanium for 10 iterations of the FDCT kernel
Implementation Performance

Original Code Path Latency Metric
21684.6 19524.2 13746.9 CPU CYCLES
17192.3 13832.2 12873.3 IA64 INST RETIRED
11608.2 8620.1 5974.6 EXPL STOPS DISPERSED
13693.3 10329.2 7453.9 ALL STOPS DISPERSED
8258.3 5911.5 5058.4 DEPENDENCY ALL CYCLE
1469.9 2107.2 1611.2 DEPENDENCY SCOREBOARD CYCLE
3105.6 3193.0 3144.8 MEMORY CYCLE
6348.7 3789.0 3549.1 NOPS RETIRED
2660.9 2276.2 2338.0 UNSTALLED BACKEND CYCLE

of the code.

6. REFERENCES
[1] ISO, Coded Representation of Picture and Audio

Information, Test Model 5, iso-iec
jtc1/sc29/wg11/n0400 ed., 1993.

[2] B. Shen, I. Sethi, and V. Bhaskaran, “Adaptive
Motion-vector Resampling for Compressed Video
Downscaling,” IEEE Transactions On Circuits and

Systems for Video Technology, vol. 9, pp. 926 – 936,
September 1999.

[3] Intel Corporation, Intel IA-64 Architecture Software

Developer’s Manual, July 2000.

[4] intel, Itanium Processor Microarchitecture Reference,
245473-002 ed., August 2000.

[5] Intel Corporation, Intel Architecture MMX Technology

Developer’s Manual.

[6] Intel Corporation, Intel Applica-

tion Note AP-922 - fast, precise implementation of DCT,
http://developer.intel.com/vtune/cbts/appnotes.htm ed.

[7] A. Holtzman,
“http://dara.notbsd.org/ aholtzma/ac3/mpeg2dec.php.”.

.

.

.

1a. adds r14 = 12, r32 # assume r32 = INP

;;

1b. ld8 r25 = [r14]

2a. adds r15 = 8, r32

;;

2b. ld8 r29 = [r15] # r29 = temporary register

;;

2c. unpack2.l r25 = r25, r29

;;

3a. mov r22 = r25

4. shr.u r25 = r25, 32

;;

5. ld8 r30 = [r32]

6. unpack2.l r25 = r25, r22

;;

7. mov r21 = r30

8. padd2.sss r30 = r30, r25

;;

9. psub2.sss r21 = r25, r21;

.

.

.

Figure 7: Translated IA64 MMX FDCT code frag-
ment

.

.

.

5. ld8 r30 = [r32]

1a. adds r14 = 12, r32 # assume r32 = INP

2a. adds r15 = 8, r32

;;

1b. ld8 r25 = [r14]

2b. ld8 r29 = [r15] # r29 = temporary register

;;

2c. unpack2.l r25 = r25, r29

;;

4. shr.u r22 = r25, 32

;;

6. unpack2.l r25 = r22, r25

;;

9. psub2.sss r21 = r25, r30;

8. padd2.sss r30 = r30, r25

.

.

.

Figure 8: Rescheduled IA64 MMX FDCT code frag-
ment

