
 

This paper first discusses why this problem is interesting and
then reviews previous approaches to placing control points on
images of deformable objects. The next section of the paper out-
lines our approach to placing control points automatically. Finally,
some results from our analysis are presented.

 

 1  MOTIVATION

 

Being able to annotate images with control points placed at fidu-
ciary locations is useful in many application areas. This section
discusses automatic image morphing. Other applications include
image segmentation, video compositing, interactive video, boot-
strapping annotated databases, and in-betweening for animation.

Automatic morphing [1] can be done using eigen-points by
matching each of the images separately against the coupled mani-
fold model and using those matches to locate fiduciary points in
the images. The corresponding fiduciary points in the two images
are then used as constraints in morphing. Figure

 

 

 

1 provides an
example of such a morph.

 

 2  CURRENT APPROACHES
to point location on images of deformable objects

 

Active contour models (snakes) [2][3] can easily be thought of as
finding point locations at the nodal points of the contour model.
However, there is no direct link between the image appearance
(the external-energy term) and the shape constraints (the internal-

energy term). This makes the discovery of “correct” energy func-
tional an error-prone process.

Shape-plus-texture models [4][5] describe the appearance of
an object using shape descriptions (e.g. contour locations or mul-
tiple point locations) plus a texture description (e.g. the expected
grayscale values at specified offsets relative to the shape-descrip-
tion points). Unfortunately, they are forced to rely on iterative
solutions, since they need an estimate of the unknown shape
parameters in order to process the image data. Furthermore, the
shape– and texture–models do not explicitly take advantage of the
coupling between shape and the image data.

When deriving models to estimate unknown parameters, what
should be captured is the coupling between observable parameters
(like image grayscale values) and the unknown parameters, not
the independent descriptions of the unknown parameters and of
the normalized known parameters. This is similar to the difference
between reconstructive models (models that allow data to be
reconstructed with minimum error) and discriminant models
(models that allow unknown classification data to be estimated
with minimum error). We are not interested in the optimal descrip-
tion of shape or texture, individually. Instead we are interested in
the optimal description of how to discriminate different shapes
based on the observed image data. The next section describes our
approach to this coupled-description problem.

 

 3  EIGEN-POINTS APPROACH
to placing control points

 

Using eigen-points, the problem of locating fiduciary points on an
unmarked image using the information from previously marked
images is solved in two stages. The first stage is to locate the fea-
ture of interest—for example, the actors’ lips. This can be done
using template- or model-based matching. For example, eigen-
features [6] can be used to locate each feature using an affine man-
ifold model.

The second stage is to then place the control points around the
feature, marking the same fiduciary points as were marked in the
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 places control points onto unmarked images. The
control points are the image locations corresponding to fiduciary
points on an object.   For example, we might designate ten points
on the outside boundary of the lip as fiduciary points on a face.
Then, the control points mark the image locations where those
points on the outside lip boundary appear. The control-point loca-
tions are estimated using a coupled manifold model, which
describes the joint variation of the image appearance and the con-
trol-point location. 

Figure 1: Examples of image morphs
using automatically placed correspon-
dence points. The control-point locations
used in these morphs were estimated auto-
matically by eigen-points. Constraints
were placed around eyes, nose, mouth,
chin and ears. No constraints were placed
on the hair, neck or shoulders.original originaloriginalautomatic morph automatic morph
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training data—for example, the outer boundary of the lips. Once
the feature locations are estimated, the control-point placement is
completed by extending the affine model approach to include esti-
mation of “hidden dimensions”. These hidden data dimensions are
the locations of the control points associated with the feature. To
estimate the values along the hidden dimensions, a feature model
that captures the coupling between the observable dimensions (the
grayscale values) and the hidden dimensions (the control-point
locations) is used.

Control-point placement around a feature location is done in
eigen-points in three steps. First, at each estimated feature loca-
tion, the observed variations (the variations of the grayscale values
from their expected values) are projected onto the grayscale sub-
space of the coupled manifold, giving the strength for each princi-
pal component in that pattern of variation. These strengths are
then scaled according to the coupling ratios between the grayscale
and the control-point subspaces. This re-scaling of the dimensions
allows us to then take the projected (grayscale subspace) location
on the coupled manifold and reconstruct the hidden data values
(the control–point locations).   The variations in control-point
locations (their deviations from the expected locations) are
retrieved by projecting the scaled manifold location back into con-
trol-point  coordinates, using the principal components
of the control-point locations.

 

 3.1  Training on coupled control-point and feature image data

 

The coupled grayscale/control-point models are computed using
the training database. The training data includes both feature
images and  locations for the control-points associated with
that feature, relative to the “origin” defined by the feature loca-
tion.

The initial processing to derive this coupled manifold model
is similar to that for eigen-features [6]. Feature subimages are ana-
lyzed to get , the -length vector of expected image values,
and , an unbiased matrix of image data. Similarly, the  con-
trol-point locations given with each image are analyzed to get ,
the -length vector of expected control-point locations, and ,
an unbiased matrix of control-point locations from the training
data. These two matrices are combined into a coupled image/con-
trol-point matrix  with each image column of  aligned
with the corresponding control-point column of . The most sig-
nificant left and right singular vectors and the corresponding sin-
gular values of this matrix are computed. For simplicity of
explanation, we will describe the process using an SVD of the
coupling matrix itself. Using the SVD,
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where the first  components of the decomposition are consid-
ered significant and the remaining are treated as noise dimensions
and where  and  are the  and the  matri-
ces corresponding to the image and the control-point subspaces
within the -dimensional coupled manifold, respectively.

 

 3.2  Estimating a feature’s control-point locations

 

Control-point placement takes the subimage from the area sur-
rounding the estimated feature location in the new image and
projects that onto the coupled manifold:
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2
and then projects that coupled manifold location into the control-
point subspace:
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This is the general form for estimating control point locations

from (unlabeled) image data. The next two sections present alter-
native implementations of this estimation equation. Section 3.2.1
provides an approximate implementation, with reduced computa-
tional requirements. Section 3.2.2 provides an exact implementa-
tion, with corrections for common noise sources.

 

3.2.1 Approximate control-point location

 

Equation 3 can be solved approximately, without computing a
matrix inverse, as long as  is nearly orthogonal. This will be
the case, in situations where the signal-to-noise ratio of the image
subspace is much higher than that of the control-point subspace.
Typically this happens when low-resolution images with control-
point locations marked at integer-pixel positions are used in train-
ing. The computational savings of this approach are increased
when features are located using a manifold model derived from
the image subspace of the coupled model.

When  is nearly orthogonal, Equation 3 can be approxi-
mated by:
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where  is a diagonal matrix with the 

 

i

 

’th entry equal to the vec-
tor length of .

This approximation can be combined with feature location
using the image subspace of the coupled model for further compu-
tational savings. If the features are located using the manifold
model implied by  (instead of by the optimal
manifold model reported in [6]), these two steps can share the
computations that involve . The optimal feature model is
very close to  under the same conditions
described above: namely, much higher signal-to-noise ratios in the
training set’s image subspace than in its control-point subspace.

 

3.2.2 Exact control-point location

 

When high accuracy is required, the true inverse to  should be
used and corrections should be included for expected sources of
labeling noise.

When the exact inverse of  is used, the computational
noise from multiplying by  can be reduced. This is possi-
ble due to the joint structure of  and : namely,

. With this constraint, a C-S decomposi-
tion [7] can be used to find SVDs for  and  with identical
right singular vectors. The control point locations can then be esti-
mated in a new image from:
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where  and  are the non-zero singular values of  and

,  and  are the corresponding left singular vectors, and
 is the shared right singular vectors (which is used below).

The estimation process is now a simple sequence of: orthonor-
mal projection (onto the manifold), component scaling, and
orthonormal projection (into the control-point space). This combi-
nation of steps will have lower computational noise than using

 directly. Even when component scaling is replaced by a
full matrix multiply, it is best completed in the manifold subspace,
in order to reduce the dimensionality of the full matrix multiply.

Inaccuracies are introduced into the labeling process by the
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choice of the dimension of the coupled manifold model itself. The
selection of  is a difficult and, in some sense, arbitrary choice.
The first  component directions are all treated as if they are
determined solely by the signal component of the coupling data,
while the other component directions are treated as if they contain
no information about the coupling data. This problem can be cor-
rected by replacing this hard classification with a gradual roll-off
across the coupling components. This correction results in the
replacement of  with a general matrix, which combines a
gradual roll-off across the principle components of the coupled
dataset with the scale changes dictated by . In particular:
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where  and  is our best
estimate for the component noise in the coupled training data.
Including  in the computation provides a gradual roll-off
across the coupling components, de-emphasizing the parts of the
coupled data which are likely to come from noisy components.

Noise in the new, unlabeled image will introduce another type
of error. Input image noise will inflate our estimates of the
observed variations and will result in incorrect control-point esti-
mates. Regularizing the inverse of  can reduce the effects of
this input noise.

Equation 6, along with noise-level normalization prior to the
analysis [7] and regularization to account for the expected input
noise, is what is used to get the results shown in Figure 1 and the
some of the results discussed in the next section.

 

 4  RESULTS

 

A training database was formed from images of seven people,
starting with five original images of each person. These images
were marked with 235 control points: 56 around the outline of the
head, face, and ears; 29 each around the left and right eyes, irises
and eyebrows; 31 around the nose and nostrils; and 90 around the
boundaries of the lips, teeth and gums, and on the smile lines.
These control points were grouped into 18 “features” (using K-
means clustering on the average and variance of their separation
distances). For each of these clusters in each of the images, the
corresponding feature location was taken to be the median (x,y)
values of the control point locations in the cluster. For the sake of
simplicity, the dimensions of each feature’s subimage were speci-
fied manually: this required only 18 subimage specifications (one
for each feature cluster). The original training database of 35
images was extended using automatic morphing to create one in-
between image for each same-person pair in the original database.
These in-between images did not require any additional manual
labeling, since their control point locations can be computed
directly from the originals. All the images were also flipped hori-
zontally and added to the database. In this way, a database of
2*(7*(5*4)+35)=350 images was formed.

Noise-level normalization was completed prior to the princi-
pal components analysis on the coupled data. The noise level in
each image dimension was estimated from its average value,
assuming that the noise variance is proportional to the average
pixel value, above some lower bound. The noise variance in the
control point locations was assumed to be one to four pixels,
depending on how directly visible the point was in most images
(four pixels for the top of the head and the gum lines; two pixels

for the top and bottom of the iris and the top of the lower teeth;
one pixel for everything else).

The performance in placing control points, given the correct
feature location, was tested, on the same set of images as were in
the training database. The feature location was, again, the median
control-point (x,y) values for the feature cluster. The average error
in control point location (relative to the marked location) was less
than one pixel when using either approach: the error with the
approach from Section 3.2.1 (0.9 pixels) was not significantly dif-
ferent from that with the approach from Section 3.2.2 (0.8 pixels).
The maximum error in both cases was about 16 pixels, as shown
in Figure 2.

The performance in locating features and placing control
points was tested on a separate set of images, showing new shots
of the people that were used in the training set. Using the
approach from Section 3.2.1 (with the image subspace of the cou-
pled manifold for feature location), the average error was 1.5 pix-
els in feature location and 3.0 pixels in control-point location.
Using the approach from Section 3.2.2 (with eigen-features [6] for
feature location), the average error was 1.0 pixel in feature loca-
tion and 1.5 pixels in control point location. Examples are shown
in Figure 3.

 

 5  CONCLUSIONS

 

Eigen-points provides explicit estimates of fiduciary point loca-
tions, which are useful in applications such as image morphing,
lip-synching, in-betweening, interactive video, image segmenta-
tion and video compositing. In eigen-points, multiple control
points are associated with an image feature. Feature locations are
then estimated and used with coupled affine manifolds to estimate
the control-point locations around the feature. The eigen-point
training data can also be used to group control-points and image
regions into features and their associated control-points. This
grouping process can use the training control-point information to
define the “correct” alignment of a feature across example images
and to minimize the internal deformations within a single image
feature. This capability is useful both for eigen-points and for
other model-based matching algorithms, such as eigen-features.
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Figure 2: Examples of re-labeled training data. The images
that were used as training data were themselves re-labeled,
using the coupled models which were derived from them. The
new estimates are shown in green; the original training data in
red. The approaches described in Section 3.2.1 and in Section
3.2.2 resulted in nearly identical relabelings, with the labeling
errors in the same directions and in nearly the same amplitude
at each of the control points. The difference in the average error
between the two approaches on this set of inputs was not signif-
icant (0.9 pixels vs. 0.8 pixels).

This image shows the worst errors, with offsets around 16
pixels at the top of the head. Other locations where errors
tended to occur were at the gum lines and at the top of the fore-
head. It is not clear how much of this error is due to poor train-
ing data (i.e. inconsistent original labeling) and how much is
due to the reduced “compliance” of the manifold models at
these control points. The compliance was effectively reduced
by the increased noise variance estimates for these locations.
Another possible source of error would be an incorrect model
of the way in which the image noise varies with amplitude.

Figure 3: Labeling images which were not in the train-
ing data base. These images, along with others, where
used as a disjoint testing set: none were included in the
training database. (Other images of these same people
were included in the training database.) labeling using the
approach from Section 3.2.1 with the image subspace of
the coupled manifold model for feature location (top row)
averaged about 1.5 pixels in feature-location error and 3
pixels in control-point-location error.  labeling using the
approach from Section 3.2.2 with eigen-features for loca-
tion (bottom row) averaged about 1 pixel in feature-loca-
tion error and 1.5 pixels in control-point-location error.

The differences in the performance in these two
approaches can be seen most clearly in:

– the control-point locations around the irises in the
left images (the approach from Section 3.2.1 does not fol-
low the right edges of the irises well);

– the control point locations along the upper bound-
aries of the top lip in the left images (both approaches
exaggerate the cleft in the top edge of the top lip; the
approach from Section 3.2.1 does a poor job of following
the left half of the top edge);

– the control point locations on the boundaries
between the upper and lower lips in the left images (the
approach from Section 3.2.1 does not align the boundary
at the bottom of the upper lip with the boundary at the top
of the lower lip);

– the control point locations around the left irises of
the right images (the approach from Section 3.2.2 does
not trace out the desired circle for the iris); and

– the control point locations along the upper bound-
aries of the bottom lip in the right images (the approach
from Section 3.2.1 places the control points above the top
of the bottom lip, near the top of the bottom teeth).

Labeling using the approach from Section 3.2.1

Labeling using the approach from Section 3.2.2
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