
 

 1  Introduction

 

Annotating images with control points is useful in many
application areas. Applications include automatic lip
synching [1], “in-betweening” for animation, bootstrap-
ping annotated databases, interactive video, image segmen-
tation, video compositing, view-based model capture [2],
and automatic image morphing [3].

Each of these applications needs the image locations of
fiduciary points. Control points mark these image loca-
tions.

 

*

 

 Most of these applications use a large number of
highly inter-dependent control-point locations. For exam-

ple, the morphs shown in Figure 1 use 235 control points
placed around the face. We could try to locate each of these
points using standard feature-spotting methods (e.g. eigen-
features [4]). However, such an approach does not exploit
the dependences between control-point locations. Instead,
eigen-points searches for image features that are associated
with a group of control points and then estimates the de-
tailed spatial distribution of the control points around that
feature.

The next section of this paper reviews previous ap-
proaches to placing control points on images of deformable
objects. Section 3 outlines eigen-points, our approach to
placing control points automatically. Section 4 presents our
results using eigen-points. Finally, Section 5 summarizes
the advantages and shortcomings of our approach.

 

 2  Previous approaches to point location on
images of deformable objects

 

Our earlier work in automatic image morphing [3][5]
placed control points without detailed models of the image
content, using general matching techniques. These ap-
proaches fail when the images are significantly different,
since they rely on direct matching between the images. Fur-
thermore, they do not allow annotated examples to improve
future analyses.

Active contour models [6][7] estimate control-point lo-
cations along a contour or snake. Bregler et al [7] propose
an internal energy term to measure the distance between the
estimated and expected shapes of the contour. This allows

 

* 

 

A fiduciary point is a specific location on an object’s surface. The con-
trol point marks its image-plane location. For example, we might desig-
nate the outside left corner of the lips as a fiduciary point on a face. Then,
the control point marks (

 

x,y

 

) = (81,121), for example, as the image loca-
tion where that point appears.
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ABSTRACT

 

Eigen-points estimates the image-plane locations of fidu-
ciary points on an objects. By estimating multiple loca-
tions simultaneously, eigen-points exploits the inter-
dependence between these locations. This is done by asso-
ciating neighboring, inter-dependent control-points with a
model of the local appearance. The model of local appear-
ance is used to find the feature in new unlabeled images.
Control-point locations are then estimated from the
appearance of this feature in the unlabeled image. The
estimation is done using an affine manifold model of the
coupling between the local appearance and the local
shape. 

Eigen-points uses models aimed specifically at recover-
ing shape from image appearance. The estimation equa-
tions are solved non-iteratively, in a way that accounts for
noise in the training data and the unlabeled images and
that accounts for uncertainty in the distribution and
dependencies within these noise sources.
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Figure 1: Examples of image
morphs using automatically
placed correspondences

The control-point locations for
these morphs were estimated
automatically by eigen-points.
Constraints were placed around
eyes, nose, mouth, chin and ears.
No constraints were placed on
the hair.

 

Interval Research Corporation Technical Report # 1996-060

Copyright 1996 IEEE. Published in the Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, Oct 14-16, 1996. Killington, VT.

Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and
Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.



 

them to take advantage of example-based learning to con-
strain the estimated locations of these control points. How-
ever, there is no direct link between the image appearance
(the external-energy term) and the shape constraints (the
internal-energy term). This makes the discovery of “cor-
rect” energy functional an error-prone process.

Shape-plus-texture models [8][9] describe appearance
using two separate reconstructive models: one for shape
(e.g. contour locations) and one for shape-free texture. The
shape-free texture descriptions model the grayscale values
under object-centric sampling. Thus, the texture models do
not describe the observed grayscale data, but instead de-
scribe the grayscale data resampled according to the esti-
mated shape description. These shape-plus-texture
approaches give simultaneous estimates for many control-
point locations. They have well-defined example-based
training methods and an error criteria derived from train-
ing. However, the texture models use an estimate of shape.
Thus, they are forced to rely on iterative solutions to find
consistent shape and texture estimates.

Another drawback to shape-plus-texture approaches is
their use of 

 

reconstructive

 

 as opposed to 

 

discriminative

 

models. The texture model capture the principal variations
of the (shape-normalized) appearance, giving the minimum
mean-square error reconstruction for a given description
length. However, our goal is to find a good estimate for the
true shape, not to find a good estimate for the true appear-
ance (shape-normalized or otherwise). Instead of a recon-
structive texture model, we need a “shape-discriminant”
model of texture. That is, we need the model that best cap-
tures the principal variations of shape, as manifested in ap-
pearance.

The next section describes our approach to discriminat-
ing between shapes based on the observed image data.

 

 3  Eigen-point approach to placing control
points

 

Using eigen-points, the problem of locating fiduciary
points on an unmarked image is solved in two stages. First,
the location of features

 

*

 

 are estimated; then control points
are placed around that feature.

The first stage locates the feature of interest—for exam-
ple, the actors’ lips. This can be done using template- or
model-based matching. The feature location defines both
the subimage and the image-plane origin that are used in
the second stage.

The second stage places the control points around the
feature—for example, marking the locations in the image
that show the outer boundary of the lips. The locations of
the fiduciary points are estimated using an affine manifold
model that couples the grayscale values within the feature
to the control-point locations associated with the feature.

This approach effectively assumes that there is a single 

 

K

 

-
dimensional vector, , which drives both the feature gray-
scale vector and the control-point locations. The functions
which transform this vector into appearance and shape are
assumed to be affine.

Assuming a coupled, affine model for image-plane
shape and appearance, the defining equations for the gray-
scale values and the control-point locations are:

1

where  is the vector of grayscale values within the feature
extent;  is the vector of (x,y) control-point locations rela-

tive to the feature origin;  and  are the vectors of expect-
ed values for  and ;  and  are noise vectors for 

and ; and  is the vector driving both appearance and
shape. Without loss of generality,  is a vector of zero-
mean and iid random variables. Also without loss of gener-

ality,  is a vector of iid random variables. This is

enforced by prior rotation and re-scaling of  and 
to diagonalize and equalize the noise covariance matrix.

With this underlying structure, we can relate the gray-
scale values within the feature to the control-point loca-
tions. In training, we use labeled data to estimate the affine

manifold over which  varies in response to chang-
es in . This is a coupled manifold model. When labeling
new images, the coupled manifold model is used to place
control points around the feature location. First, the gray-
scale values within the feature are projected onto the cou-
pled manifold, giving an estimate for . This manifold
location is then reprojected into the control-point subspace,
giving estimates for the control-point locations.

The remainder of this section discusses these steps in
more detail. Section 3.1 describes the modeling of the la-
beled training data. Section 3.2 describes the labeling of
new image data. Section 3.2 also discusses expected noise
sources and proposes variations of the labeling approach to
reduce expected errors.

 

 3.1  Training on coupled control-point and fea-
ture image data

 

The coupled grayscale/control-point model is computed
from a training database. The training data include both
feature images and (x,y) locations for the control-points as-
sociated with that feature, relative to the “origin” defined
by the feature location.

The initial processing to derive this coupled manifold
model is similar to that for eigen-features [4]. Feature sub-
images are analyzed to get , the 

 

N

 

x

 

N

 

y

 

-length vector of ex-
pected image values, and , an unbiased matrix of image
data. Similarly, the 

 

L

 

 control-point locations given with
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A “feature” is the image-plane appearance of the object surface sur-
rounding one or more fiduciary points. It is an area of the image (in con-
trast with control-point locations and fiduciary points).
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each image are analyzed to get , the 

 

2L

 

-length vector of
expected control-point locations, and , an unbiased ma-
trix of control-point locations from the training data. These
two matrices are combined into an image/control-point ma-

trix , with each image column of  aligned with
the corresponding control-point column of . The most
significant left and right singular vectors and the corre-
sponding singular values of this matrix are computed. Us-
ing the SVD, for simplicity,
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where the first 

 

K

 

 components of the decomposition are con-
sidered significant and the remaining are regarded as noise
dimensions,  is a 

 

N

 

x

 

N

 

y

 

 

 

x

 

 

 

K

 

 matrix corresponding to the
image subspace and  is a 

 

2L

 

 

 

x

 

 

 

K

 

 matrix corresponding
to the control-point subspace.

Ideally, this analysis describes the true coupled mani-
fold underlying the data: that is, it describes  and 

from Equation 1. In fact, if  and

 is uncorrelated with , then 

and  (to within a right unitary trans-

form). Thus, the matrices, , , and , along with the

vectors  and  and the scalar , form our basic “cou-

pled manifold” model. The next section discusses ways of
using this model to estimate control point locations.

 

 3.2  Estimating a feature’s control-point locations

 

When labeling new images, the coupled manifold model
is used to place control points around the feature location.
First, the grayscale values within the feature are projected
onto the coupled manifold, giving an estimate for . As-
sume for the moment that the training data conform to the

affine manifold model and are noise free ( ) and that

our image data are also noise free. Our best estimate for 
(within a unitary transform) is given by:

3

This estimated manifold location is then projected into the
control-point subspace, giving estimates for the control-
point locations:

4

Equation 4 provides control-point estimates which are
optimal under a fairly stringent set of assumptions. Even
with these assumptions, the estimates from Equation 4 suf-
fer from computational noise due to the matrix inverse and
the matrix multiply. Under more realistic assumptions, the
estimates from Equation 4 suffer from errors in the original
manifold model,  and from errors due to noise

in the image data, . We address each of these potential
problems in turn.

 

3.2.1 Avoiding matrix inversion and multiplication

 

Using a matrix inverse for  followed by a matrix multi-
ply by  introduces more computational noise than nec-
essary. Instead we can take advantage of the special
structure imposed on these two matrices by the fact that

. Using this constraint, a C-S decom-
position [10] is used, giving the SVDs for these two matri-
ces which share right singular vectors:

5

Using this formulation in Equation 4, the control point
locations are estimated on a new image using:

6

The estimation process is now a simple sequence of:
– projection onto the coupled manifold (using the left

unitary matrix );
– component scaling of the manifold coordinates (using

the diagonal matrix ); and
– projection into the control-point space (using the left

unitary matrix ).
This combination of steps has lower computational noise
than Equation 4: only unitary transforms and scalar opera-
tions are used in place of general matrix operations.

 

3.2.2 Adjusting the manifold model for noisy or non-
linear training data

 

Inaccuracies are introduced into the labeling process by the
dimension of the coupled manifold model. The number of
principal components to retain in the model is a difficult
and largely arbitrary choice. In Equation 4 (and Equation

6), the first 

 

K

 

 component directions ( ) are treated

as if they were determined solely by the signal component
of the training data, while the other component directions
( ) are ignored, as if they contain no information about

the coupling data. If a small value for 

 

K

 

 is used, image data
with valid coupling information about control-point loca-
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Both the left and right principal components can also be determined
using a partial eigen-analysis of the coupled matrices.
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tions are ignored. If a large value for K is used, the fidelity
of some of the component directions (the columns of 
and ) is extremely low and this corrupts the final esti-
mate of all the control-point locations.This problem can be
mitigated by replacing the hard decision with a gradual
roll-off across the coupling components.

When the noise vector  is truly uncorrelated
and identically distributed, it does not rotate the principle
component directions away from the underlying manifold.

In this case,  and  provide

an optimal estimate for the underlying coupled manifold.
Unfortunately, insuring that the noise vector is uncorrelated
and identically distributed requires a complete model for its
covariance matrix. The noise models are only roughly
known and the actual noise vector, even after data rotation
and rescaling, typically violates the uncorrelated/identical-
ly-distributed condition.

When the noise covariance is not a scaled identity ma-
trix, the noise covariance rotates the principal component
directions of the training data away from the component di-
rections of the coupled manifold. These rotations are well
approximated as additive noise in the “observation” of 
given by Equation 3. Based on subspace sensitivity analy-
ses [10], the variance of this additive noise in  is bounded

by  where  is the norm of the covari-

ance of . The farther the covariance of  is
from a scaled identity matrix, the tighter this bound is on
the additive noise in . Using this formulation, the mini-
mum-mean-square-error estimate for  is then:

7

Combining this with the Equations 4 and 5 gives:

8

where  and  is defined

in Equation 5.

Including  (or ) in the computation

provides a gradual roll-off across the coupling components,
de-emphasizing the parts of the coupled data which are
likely to come from noisy components.

The estimation process still uses unitary matrices to
project to and from the coupled manifold (  and ).

However, a new matrix multiply is now needed on the man-
ifold coordinates (for ). This approach is still

best, with regard to computational noise, since the general
matrix multiply occurs within a lower dimensional space
(only KxK dimensions, instead of 2LxNxNy dimensions).

3.2.3 Adjusting for noise in the unlabeled image data
Equation 7 is the best estimate of , assuming that there is
no noise in the unlabeled image data ( ). When there is
noise in  that is uncorrelated with , we need to adjust 
by the ratio of the signal variance to the signal-plus-noise
variance. The signal variance in the feature image is cap-

tured by the training data in . The noise variance

in the unlabeled image data may be different than that in the
training data (due to mismatched training/test conditions).
So, we use  to refer to the covariance of the noise in the

unlabeled image data. (If the training and test conditions

are matched, then .) So, the feature-image sig-

nal-to-signal+noise ratio, in the manifold subspace, is

where  is the noise-

to-signal ratio. Combining this with Equation 8 gives:

9

where  is a modified inverse of .

Given the low sensitivity of  to the details of , it can

also be approximated by . The

closer the training and test conditions are to being matched,
the better this final approximation is.

Equation 9, along with noise-level normalization [10]
prior to the analysis, is what is used to get the results shown
in Figure 1 and the results discussed in the next section.

 4  Results

A training database was formed from images of seven
people, starting with five original images of each person.
These images were marked with 235 control points: 56
around the outline of the head, face, and ears; 29 each
around the left and right eyes, irises and eyebrows; 31
around the nose and nostrils; and 90 around the boundaries
of the lips, teeth and gums, and on the “smile lines”. These
control points were grouped into 18 features (using K-
means clustering on the average and variance of their sep-
aration distances). For each of these clusters in each of the
images, the corresponding feature location was taken to be
the median (x,y) values of the control point locations in the
cluster. For the sake of simplicity, the dimensions of each
feature’s subimage were specified manually: this required
only 18 subimage specifications (one for each feature clus-
ter). The original training database of 35 images was ex-
tended using automatic morphing to create one in-between
image for each same-person pair in the original database.
These in-between images did not require any additional

UF
UP

nf
T

np
T T

UF ΣK
2 σcn

2 I–( )
1
2--- UP ΣK

2 σcn
2 I–( )

1
2---

x

x̂

σcn
2 ΣK

2 σcn
2 I–( )

1–
σcn

2

nf
T

np
T T

nf
T

np
T T

x̂

x

x̂ = I σcn
2 ΣK

2 σcn
2 I–( )

1–
+( )

1–
ΣK

1– UF
1–

f f–( )

 = ΣK
3– ΣK

2 σcn
2 I–( )UF

1–
f f–( )                       

p̂ QP ΣPXQQΣF
1–( )QF

T
f f–( ) p+=

XQQ VFP
T ΣK

2– ΣK
2 σcn

2 I–( )VFP= VFP

ΣK
2– ΣK

2 σcn
2 I–( ) XQQ

QF QP

ΣPXQQΣF
1–

x

f

f x x̂

FFT σcn
2 I–

R fn

R fn σcn
2 I=

QF
T FFT σcn

2 I–( )QF QF
TR fnQF+( )

1–
QF

T FFT σcn
2 I–( )QF

I N+( ) 1–
=

N QF
T FFT σcn

2 I–( )QF( )
1–

QF
TR fnQF( )=

p̂ QP ΣPXQQΣF
*( )QF

T
f f–( ) p+=

ΣF
* I N+( ) 1– ΣF

1–
= ΣF

ΣF
* N

ΣF
* I diag N( )+( )≈

1–
ΣF

1–



manual labeling, since their control point locations can be
computed directly from the originals. All the images were
also flipped horizontally and added to the database. In this
way, a database of 2*(7*(5*4)+35)=350 images was
formed.

The database of 350 grayscale images were then ampli-
tude normalized to improve the match between their histo-
grams. The normalizing function for each image was a
single affine function applied to all of its grayscale values.
The affine functions were determined by first establishing
a “target histogram”. The final grayscale affine normaliza-
tion for each image was then computed using a least-
squares fit between the image’s center subimage and the
target histogram. The same approach was taken to normal-
izing the test data discussed below.

Component-wise noise-level normalization was also
completed prior to the principal components analysis on
the coupled data. The noise level in each image dimension
was estimated from its average value, assuming that the
noise variance is proportional to the average pixel value,
above some lower bound. The noise variance in the control
point locations was assumed to be one to four pixels, de-
pending on how directly visible the point was in most im-
ages (four pixels for the top of the head and the gum lines;
two pixels for the top and bottom of the iris and the top of
the lower teeth; one pixel for everything else).

The performance in placing control points, given the
correct feature location, was tested on the same set of im-
ages as were in the training database. The feature location
was, again, the median control-point (x,y) values for the
feature cluster. The average error in control point location
(relative to the marked location) was less than one pixel
(0.8 pixels). The maximum error was16 pixels, as shown in
Figure 2. These results are obviously best-case results,
since the test data was included in the training data and
since the correct feature locations were given. 

The performance in locating features and placing con-
trol points was tested on a separate set of images, showing
new shots of the people shown in the training set. Eigen-
features were used for feature location. The training and
test data was normalized prior to analysis for eigen-fea-
tures, using the same methods described above. Spatial de-
pendencies between features were captured and exploited
through conditional distributions. The average error was
1.0 pixel in feature location and 1.5 pixels in control point
location. Examples are shown in Figure 3.

 5  Conclusions

Eigen-points estimates the image-plane locations of fi-
duciary points on an objects. By estimating multiple loca-
tions simultaneously, eigen-points exploits the inter-
dependence between these locations. This is done by asso-
ciating neighboring, inter-dependent control-points with a
model of the local appearance. The model of local appear-
ance is used to find the feature in new unlabeled images.
Control-point locations are then estimated from the appear-
ance of this feature in the unlabeled image. The estimation

is done using an affine manifold model of the coupling be-
tween the local appearance and the local shape.

Some advantages of eigen-points for estimating control
point locations are:

– the solution is non-iterative;
– the models are derived from examples and labeling ac-

curacy can be improved by adding more training data;
– the models are aimed specifically at recovering shape

from image appearance, instead of being pure shape or
pure appearance models;

– the estimation equations account for noise in the train-
ing data and the unlabeled images; and

–the estimation equations allow for uncertainty in the
distribution and dependencies within these noise
sources.

Future work should include:
– developing higher-order or piecewise affine models,

beyond the simple affine model currently used;
– exploiting the inter-dependencies between feature lo-

cations in a more disciplined manner;
– exploiting the inter-dependencies between control-

point locations for control points associated with dif-
ferent features; and

– improving the feature definition process.
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Figure 2: Examples of re-labeled training data.
The images that were used as training data were them-

selves re-labeled, using the coupled models which were
derived from them. The new estimates of control point loca-
tions were compared to the original values used in training.
The new estimates are shown in white; the original training
data in black. The average location error on this set of inputs
was 0.8 pixels.

This image shows the worst errors, with offsets of 16 pix-
els at the top of the head. Other locations where errors
tended to occur were at the gum lines and at the top of the
forehead. It is not clear how much of this error is due to poor
training data (i.e. inconsistent original labeling) and how
much is due to the reduced “compliance” of the manifold
models at these control points. The compliance was effec-
tively reduced by the increased noise variance estimates for
these locations. Another possible source of error is an incor-
rect model of the way in which the image noise varies with
amplitude.

Figure 3: Labeling images that were not in the training data base.
These images, along with others, were used as a disjoint testing set: none were included in the training database.

(Other images of these same people were included in the training database.) Labeling (using eigen-features for feature
location) averaged 1 pixel in feature-location error and 1.5 pixels in control-point-location error.

Lines are drawn in the images between control-point locations to simplify their interpretation. Control points around the
iris are meant to mark its outline, even when occluded by the upper or lower lid. Similarly, control points on the teeth are
meant to mark their boundaries, even when occluded by the lips. (The disconnected control points in the mouth area were
estimated as the top and bottom of the upper and lower teeth.)

The errors in the left image can be seen most clearly at: the bottoms and tops of the irises, on the top right eyelid, on
the upper boundary of the top lip and along the right smile line.

The errors in the center image can be seen most clearly at: the bottom of the center part of the nose, the bridge of the
nose, and the outline of the right nostril.

The errors in the right image can be seen most clearly at: the tops and sides of both irises, the inside and outside
boundaries of both lips, the right side of the nose, and the left smile line.
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