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There is an ambiguity in percentage change in comprehension
rates.  To illustrate this problem, consider the case when the com-
prehension rate of Mach1-compressed speech was 90% and the
comprehension rate of linearly compressed speech was 60%.  This
difference in comprehension could be described as an increase of
50% ((0.9-0.6)/0.6 = 50%) or as an increase of 30 percentage
points (90%-60% = 30%).  To avoid this confusion, we report all
changes in comprehension in terms of percentage points: the pre-
ceding example would be reported as 30 percentage points.  To
emphasize this convention, we spell out “percentage points” in
those cases that would otherwise be ambiguous.

 

 1   LINEAR TIME COMPRESSION

 

Time-compression techniques change the playback rate of
speech without introducing pitch artifacts. However, when
linear compression techniques are used, human comprehen-
sion of time-compressed speech typically degrades at com-
pression rates above two times real time [King89]. These
degradations are not due to the speech rate 

 

per se:

 

 Compre-
hension of linearly compressed speech often breaks down
above 225 to 270 words per minute (wpm) [Gade89], which
is well below the rates at which long passages of natural
speech are comprehensible (up to 500 wpm) [Fulford93].

Instead, the incomprehensibility of time-compressed
speech is due to its unnatural timing. Mach1, described in
Section 2, is an alternative to linear time compression.
Mach1 compresses the components of an utterance to
resemble closely the natural timing of fast speech. Section 3
describes our test of comprehension and preference levels
for Mach1-compressed and linearly compressed speech. In
Section 4, we draw our conclusions.

 

 2   MACH1 TIME COMPRESSION

 

Mach1 mimics the compression strategies that people use
when they talk fast in natural settings. We used linguistic
studies of natural speech [vanSanten94,Withgott93] to
derive these goals:

• Compress pauses and silences the most
• Compress stressed vowels the least
• Compress schwas and other unstressed vowels by an

intermediate amount
• Compress consonants based on the stress level of the

neighboring vowels
• On average, compress consonants more than vowels

Also, to avoid obliterating very short segments, we want to
avoid overcompressing already rapid sections of speech.

Unlike previous techniques [Arons94,Lee97], Mach1
deliberately avoids categorical recognition (such as silence
detection and phoneme recognition). Instead, as illustrated
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 over that for linearly
compressed speech, and response times dropped by 15%.
For rates between 2.5 and 4.2 times real time, there was 

 

no

 

significant comprehension loss with increasing Mach1 com-
pression rates. In A–B preference tests, Mach1-compressed
speech was chosen 95% of the time. This paper describes
the Mach1 technique and our listener-test results. Audio
examples can be found on http://www.interval.com/papers/
1997-061/.
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in Figure 1, it estimates continuous-valued measures of
local emphasis and relative speaking rate. Together, these
two sequences estimate what we call 

 

audio tension

 

: the
degree to which the local speech segments resist changes in
rate. High-tension segments are less compressible than low-
tension segments. Based on the audio tension, we modify
the target compression rate to give local target compression
rates. We use these local target rates to drive a standard,
time-scale modification technique (e.g., synchronized over-
lap-add [Roucous85]).

In Sections 2.1 through 2.3, we highlight important
characteristics of the local-emphasis measure, of the relative
speaking-rate measure, and of the technique used to com-
bine them. 

 

 2.1  Local-Emphasis Measure

 

We use the 

 

local-emphasis measure

 

 to distinguish among
silence, unstressed syllables, and stressed syllables. Empha-
sis in speech correlates with relative loudness, pitch varia-
tions, and duration [Chen92]. Of these, relative loudness is
the most easily estimated. Reliable pitch estimation is noto-
riously difficult. Reliable duration estimation requires pho-
neme recognition, because natural durations are highly
phoneme dependent. Instead, we rely on relative loudness to
estimate emphasis.

Our method is explained here, in terms of both our gen-
eral goal at each stage of the computation and our detailed
(but often arbitrary) computational choices.

 

2.1.1 Estimating local energy

 

To estimate local emphasis, we first calculate the local
energy. We simply use the frame energies from the spectro-
gram is used in speaking-rate estimation (see Section 2.2).

 

2.1.2 Normalizing by the local energy average

 

Emphasis is indicated more by relative loudness than by
absolute loudness. So, we normalize our local energy by the
local average energy.

We use a single-pole low-pass filter to estimate the aver-
age energy (

 

τ

 

 = 1 sec). We then divide the local energy by
the low-passed local energy. 

 

2.1.3 Reducing the dynamic range

 

The variations of the local relative energy are not linearly
related to our goal: controlling the segment-duration varia-
tions to mimic those seen in natural speech. In the data that
we collected, the local relative energy within emphasized
vowels averages around 4.4, with variations from 1.6 to as
high as 40.
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 The 95% confidence interval includes upward
variations of 238% above the mean. In contrast, the relative
variability of stressed-vowel durations observed in natural
speech is closer to 22% [vanSanten92]. At the same time,
the local-energy variations between unstressed vowels and
pauses are less than the compression-rate variations for
those segments seen in natural slow and fast speech
[Stifelman97,vanSanten92].

Therefore, we estimate the 

 

frame emphasis

 

 by applying
a compressive function to the relative energy. The compres-
sive function reduces the dynamic range of the large-rela-
tive-energy segments (the emphasized vowels) and expands
the dynamic range of the small-relative-energy segments
(the unemphasized vowels and the pauses). Currently, our
compressive function is hard limiting (to below 2) followed
by a square-root function.

 

2.1.4 Adding temporal hysteresis

 

Speech perception and production include temporal group-
ing effects. In American English, all segments in stressed
syllables tend to be less variable than those in unstressed
syllables [Withgott93]. This observation implies that
unvoiced consonants in a stressed syllable need to be treated
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 This large upward variation largely results from the depression in
the local average at the beginning of each new sentence, due to a
pause between sentences and to a downward energy tilt across the
preceding sentence.
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Figure 1: Overview of Mach1. Mach1 first estimates the local emphasis and relative speaking rate.
It then locally modifies the global target compression rate using a combination of those measures.
The resulting locally varying target rate drives any standard time-scale modification technique.
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as emphasized, even though their frame-emphasis values are
low: The reduction of the consonants is controlled more by
the stress of neighboring vowels than by the signal charac-
teristics of the consonant itself.

Similar temporal-grouping effects are present during
pauses within speech. The durations of long pauses (200 to
7000 msec) are much less stable than those of short pauses:
Even after normalization for the mean durations, the stan-
dard deviation is 3.5 times higher for long pauses than for
short [Stifelman97]. Long interphrase pauses can be
reduced to 150 msec with little effect on comprehension
[Arons94]. Below 100 to 150 msec, further interphrase
pause compression causes false pitch-reset percepts.
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 Thus,
our intention is to treat silences near voiced speech as
speech and to compress heavily or to remove completely
silences outside of this range.

To account for these temporal grouping effects, we
apply a tapered, temporal hysteresis to the frame emphasis
to give our final local-emphasis estimates. Our hysteresis
extends the influence of each frame-emphasis value by 80
msec into the past and 120 msec into the future. To mini-
mize discontinuities in the local emphasis, we taper the hys-
teresis, using a triangle function to extend each frame-
emphasis value into the past and future. We then find the
maximum tapered future (or current) frame-emphasis value
and the maximum tapered past (or current) frame-emphasis
value. The local-emphasis value is the average of these two
tapered maxima.

 

 2.2  Relative Speaking-Rate Measure

 

We estimate the speaking rate to avoid overcompressing,
and thereby obliterating, already rapid speech segments.
True speaking rate is difficult to measure. We can, however,
easily compute measures of acoustic-variation rates, which
covary with speaking rate. Conceptually, we are using the
phoneme-transition rate to estimate speaking rate: the
higher the transition rate, the faster the speaking rate. By
lowering our compression during transitions, we effectively
lower the compression of rapid speech. This approach also
has the advantage of preserving phoneme transitions, which
are particularly important for human comprehension
[Furui86,Stevens80]. In practice, we use relative acoustic
variability, instead of transition labels, to modulate the com-
pression rate, thereby avoiding categorical errors and sim-
plifying the overall estimation process.
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Pitch resets are perceived as sudden discontinuities in the pitch
contour, usually indicating a change of speaker or topic. While the
pitch may change drastically from one sentence to the next, if the
interphrase pause is naturally long, it is perceived as a continuous
variation, instead of as a pitch reset. Only when the pause is artifi-
cally shortened is the false percept introduced.

 

2.2.1 Estimating local spectra

 

Our estimate of relative acoustic variability starts with a
local spectral estimate. We use the spectral values from a
preemphasized narrow-band spectrogram, with a frame
length of 20 msec and a step size of 10 msec.

To avoid unreliable estimates in low-energy regions, we
set each frame whose energy level is below a dynamic
threshold to the previous frame’s values. Our dynamic
threshold varies linearly with the local energy average
(described in Section 2.1.2); for the results reported in this
paper, we set the threshold such that frames with energy lev-
els below 4% of the local average are reset.

 

2.2.2 Estimating local spectral difference

 

Intensity-discrimination studies [Moore95] suggest that
human perception of acoustic change is closely approxi-
mated by log(1 + 

 

∆

 

I/I

 

), where 

 

I

 

 is intensity. We therefore use
the sum of absolute log ratios between the current and the
previous frames’ values to estimate the local spectral differ-
ence.

To avoid overestimating the spectral difference due to
simple (scalar) changes in loudness, we normalize each
frame’s values by that frame’s total energy level prior to tak-
ing the absolute log ratios. To avoid overestimating the
spectral difference due to unreliable values in low-energy
frequency bins, we sum over the most energetic bins only.
Currently, we sum over the bins within 40 dB of the maxi-
mum current-frame value.

 

2.2.3 Normalizing by the local spectral-difference average

 

Different speaking styles and different recording environ-
ments introduce wide deviations in our absolute spectral-
difference measure. To avoid being unduly affected by these
variables, we normalize our spectral difference by the local
average difference.

Guided by informal listener tests, we estimate the local
average difference using a weighted average. The average is
weighted by the local-emphasis measure (computed in Sec-
tion 2.1). To compute the weighted average efficiently, we
apply a single-pole, low-pass filter (

 

τ

 

 = 1 sec) to the empha-
sis-weighted spectral difference. The relative spectral differ-
ence is then the ratio of the local emphasis-weighted
spectral difference to the emphasis-weighted average differ-
ence.

 

2.2.4 Reducing the dynamic range

 

The variations of the relative spectral difference overesti-
mate the upward variations in relative speaking rate. The
upper 1% of the weighted spectral-difference values range
from 4 to 10 times the average.

 

 

 

Most of the large relative
spectral differences occur at plosive releases. In contrast,

 

except for plosives,

 

 segmental-rate variations in natural
speech remain below 4 times the average speaking rate
[vanSanten92, vanSanten94]. Despite this exception, the
large upward variations in the speaking-rate estimate should



 

be eliminated: [vanSanten94] reports that, in naturally fast
speech, the local reduction in compression during plosives
is only about 20%.

Therefore, this step estimates the 

 

relative speaking rate

 

by simply hard-limiting the relative spectral difference to
below four times the average.

 

 2.3  Local Target Compression Rates

 

The local-emphasis and relative speaking-rate measures
depend purely on the audio signal that we plan to modify:
They can be computed as the signal is being recorded. What
remains is to combine these two measures together, to get a
single measure of the compressibility of the underlying
speech and to then combine that compressibility measure
with the listener’s target compression (or expansion) rate.

 

2.3.1 Computing audio tension

 

We compute audio tension from local emphasis and relative
speaking rate using a simple linear formula:

,
where

•  is an audio-tension value
•  is a local-emphasis estimate for the speech utter-

ance being compressed
•  is a relative speaking-rate estimate
•  and  are the mean values of the local-emphasis

and speaking-rate estimates, respectively
•  is a constant-valued coefficient
•  is a constant-valued coefficient, with  for time

compression and  for time expansion
Thus, the audio tension increases as the local emphasis

increases, from low tension (comparatively large compres-
sions or expansions) in regions of silence to high tension
(comparatively small compressions or expansions) in
stressed segments. For time compression, the audio tension
increases as the relative speaking rate increases, from low
tension (comparatively large compressions) in regions of
slow speech to high tension (comparatively small compres-
sions) in regions of fast speech. Due to the sign change of

, the opposite is true for time expansion: The audio tension
decreases as the relative speaking rate increases, from high
tension (comparatively small expansions) in regions of slow
speech to low tension (comparatively large expansions) in
regions of fast speech.

For the results reported here, we set  and
. For simplicity, we set 

 

 and  to a prior esti-
mate of the mean emphasis and speaking rate:
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 Specifically, we set
 and .
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These prior estimates of  and  were derived from a set of
speech samples that did not include any of the samples used in the
listener tests, discussed in Section 3.

 

2.3.2 Computing local target compression rates

 

From audio tension and from a desired global compression
(or expansion) rate, we compute local target rates as
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,
where

•  is a local target compression or expansion rate
•  is the desired global compression or expansion

rate
We use these target local compression rates as an input

to standard time-scale modification techniques. With syn-
chronous overlap-add (SOLA), for example, we use the
local target rates to set, frame by frame, the target offset
between the current and previous frames in the output audio
signal.

The sequence of local compression (or expansion) rates
typically gives overall compression (expansion) rates near
the requested global rate, . However, there is no guaran-
tee that this global rate will be achieved. In cases where the
global compression rate is important, we add a slow-
response feedback loop around the previously described
system. This feedback loop acts to correct long-term errors
in the overall compression (expansion) rate by adjusting the
nominal value of  appropriately. The loop’s response
time must be slow, to avoid distracting artifacts due to rapid
changes in the target rate.

 

 3   COMPARISON OF MACH1-COMPRESSED AND 
 LINEARLY COMPRESSED SPEECH

 

We conducted a listener test comparing Mach1-compressed
speech to linearly compressed speech. Parts of this test can
be found on our web page (http://www.interval.com/papers/
1997–061/).

 

 3.1  Method

 

Fourteen subjects participated in a listener test to compare
comprehension and preferences for Mach1-compressed ver-
sus linearly compressed speech. All the subjects were adult
professionals, fluent in English and without hearing impair-
ments. None had significant prior experience in listening to
time-compressed speech. All aspects of the test, 

 

except

 

 the
identity of the compression technique used on each clip,
were explained to the subjects before testing.

All the test materials were taken from Kaplan’s TOEFL
study program [Rymniak97]: The utterances are from their
audio CD and the questions and answer choices are from
their book. We screened the utterances and the comprehen-
sion questions to remove those based on factual information
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In this equation for , we assume that both compression and
expansion rates are expressed as numbers greater than 1. Using this
convention, the offset between time frames of the output is set to

 times the input frame offset for compression, and is set to
 times the input frame offset for expansion.
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(e.g., the physical characteristics of New York). The ques-
tions used in comprehension sections relate to information
available from the audio samples only (e.g., a partial train
schedule followed by “When does the 4 train make local
stops?”). We created individual audio clips from CD tracks
by segmenting out the desired utterances and including 0.25
second of silence at the beginning and end of each clip.
Word counts for each audio clip were taken from the
Kaplan-provided transcripts. The uncompressed audio sam-
ples range from 111 to 216 wpm.

Each audio clip was sped up twice: once using Mach1
compression and once using linear compression. Since all
our audio was single pitched, we used SOLA both as the
(variable-rate) Mach1-driven compression technique and as
the (constant-rate) linear compression technique. The over-
all compression rates for the two techniques were equal.

Mach1 compression was done first, with 

 

R

 

g

 

 = 3, and
without correction of the overall compression rate (Section
2.3.2). The true compression rate achieved by Mach1 on
each audio sample was computed. Each clip was then
recompressed linearly to the same global rate that the
Mach1 compression achieved. This process gave two ver-
sions of each audio sample—one from Mach1, the other
from linear compression—both with the same overall com-
pression rate.

The actual compression rates that we achieved using this
approach ranged between 2.56 and 4.15 times real time
(mean=3.02, median=2.99, s.d.=0.35). The resulting speak-
ing rate ranged from 390 to 673 wpm (mean=500,
median=497, s.d.=57). As shown in the compression–wpm
scatter plot of Figure 2, the resulting audio clips cover the

rectangle from 420 to 600 wpm and from 2.6 to 3.5 com-
pression rate.

Each audio sample was assigned to pool A or to pool B.
These audio pools were approximately balanced for com-
pression–wpm rates. This balancing was done separately for
each section of the test. (The individual test sections are
given in Sections 3.1.1 to 3.1.4.) In the comprehension sec-
tions of the test, one half of the subjects heard the pool-A
audio clips compressed with Mach1 and the pool-B audio
clips compressed linearly. The other one half of the subjects
heard the opposite technique: pool-A audio clips com-
pressed linearly and pool-B audio clips compressed with
Mach1. Assuming that the audio pools (and their associated
questions) were correctly balanced for difficulty and that the
two groups of subjects were also well balanced, this tech-
nique allows us to use purely within-subjects measures of
the difference between Mach1 and linear compression. We
tested for differences between the pools as part of our multi-
variate analysis of variance (MANOVA). No statistically
significant differences were found (group effects:

 

F

 

1,12

 

 

 

=

 

 

 

0.03, 

 

p

 

 

 

=

 

 

 

0.874; group

 

 

 

X

 

 

 

section effects: 

 

F

 

4,9

 

 

 

=

 

 

 

0.52,

 

p

 

 

 

=

 

 

 

0.722; group

 

 

 

X

 

 

 

compression-type effects: 

 

F

 

1,12

 

 

 

=

 

 

 

1.08,

 

p

 

 

 

=

 

 

 

0.319).
In the preference section, both Mach1-compressed and

linearly compressed versions of the selected audio samples
were played, allowing direct comparisons between the com-
pression techniques. The presentation order of the audio
(i.e., whether Mach1 was first) was again balanced relative
to compression–word-per-minute rates.

The test was divided into six sections: Five sections
tested comprehensibility of compressed audio clips; the
final section tested preference between compression types.

 

3.1.1 Testing short-dialog comprehension

 

Three of the five comprehension sections were based on 90
short dialogs. Each dialog used one male and one female
voice, saying one sentence each. Each audio clip also
included one verbal question, spoken by a third voice, at the
end of the dialog. Each audio clip (both dialog and question)
was compressed as described previously.

Throughout the comprehension sections, the subjects
controlled when the playback of each audio clip began, so
they could to rest prior to starting each new audio clip with-
out affecting their response-time data. Throughout the com-
prehension sections, the subjects had no control over the
playback once it was started; each audio clip in the compre-
hension sections could be played once only.

Each question had to be answered with one of four
answers. The choices were displayed on the screen after the
audio clip finished playing. Throughout the comprehension
sections, response times were measured from the time the
answers appeared to the time the subjects submitted their
answers. The subjects knew that their response times were
being measured.

fin
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 w
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e

Figure 2: Scatter plot of audio clips used in listener test. The
two pools of audio data are distinguished by the x ’s and o’s.

compression rate



These short-dialog comprehension tests were presented
to the subjects as the first, third, and fifth sections of the test.

3.1.2 Testing long-dialog comprehension
Another comprehension section was based on 10 long dia-
logs and 40 questions total. Each dialog used two voices
(one male, one female); each voice spoke three to four
times, saying 7 to 14 sentences. Each dialog was com-
pressed as described previously.

After the dialog, four written questions and answers
were shown to the subjects. Each question had to be
answered from four forced-choice answers. The questions
and answers were shown to the subjects sequentially, the
first immediately after the audio clip finished playing and
the following ones immediately after the previous question
was answered.

These tests of long-dialog comprehension were pre-
sented to the subjects as the second section of the test.

3.1.3 Testing monolog comprehension
Another comprehension section was based on eight mono-
logs and 30 questions total. Each monolog used one voice,
saying 9 to 15 sentences. Each monolog was compressed as
described previously.

After the monolog finished playing, three or four written
questions and answers were shown to the subjects. The for-
mat was the same as that used for the long dialogs.

These monolog comprehension tests were presented to
the subjects as the fourth section of the test.

3.1.4 Testing subjective preference
The preference section was based on 40 pairs of audio clips.
Each pair of clips used either a dialog or a monolog from the
previous comprehension sections. Each pair was com-
pressed as described previously. In this section only, the
subjects could control freely the playback of each pair of
audio clips: They could play either audio clip as often as

desired, they could switch back and forth between audio
clips, and they could rewind either clip.

Once the subjects listened to at least part of each of the
pair of audio clips, they could select one or the other clips as
their preference. They were required to make a choice
between all pairs of audio. Response times were not mea-
sured; instead, the subjects were encouraged to take as much
time as they needed to decide between the clips.

This preference test was presented to the subjects as the
sixth and final section of the test.

 3.2  Results
We analyzed the results of the comprehension sections
using a two-way, within-subjects MANOVA. The two treat-
ment factors were two compression types (Mach1, linear)
and five test sections (three short-dialog sections, one long-
dialog section, one monolog section). The mean compre-
hension rate across all categories was 77%. The mean
response time was 7.9 sec. The overall difference in com-
prehension rates between Mach1-compressed and linearly
compressed speech was 17 ± 4 percentage points.7 The over-
all difference in response times between compression types
was –1.2 sec ± 0.6 sec. These differences were clearly signif-
icant (F1,13 = 69.8, p < 0.001 for the comprehension differ-
ences; F1,13 = 17.8, p = 0.001 for the response-time
differences). There was also significant interactions between
compression type and test section (F4,10 = 13.6, p < 0.001 for

7 See footnote 2 on page 1 of this paper for a discussion of the use
of “%” versus “percentage points”
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Figure 3: Plot of difference in comprehension between
Mach1 and linear compression as a function of compression
rate. The results of linear regression are shown as a solid
line.

Table 1: Comprehension-rate differences between
Mach1-compressed and linearly compressed speech, by
test section. Significance levels for each section are also
shown.

Section
type

 Comprehension rates
(in percentage points)

Average Difference (Mach1 – linear) 

short dia-
logs

70 31.0 (  =  8.60,p <  0.001)

82 14.8 (  =  4.13,p <  0.001)

76 24.3 (  =  6.79,p <  0.001)

long dialogs 79    5.4 (  =  1.50,p =  0.702)

monologs 81 10.0 (  =  2.79,p =  0.036)

t ′52

t ′52

t ′52

t ′52

t ′52



the comprehension differences; F4,10 = 13.2, p = 0.001 for
the response-time differences). The differences in compre-
hension rates between the compression types are shown by
section in Table 1. We tested the significance of these differ-
ences individually using planned comparisons. The results
of those tests are also included in Table 1.8

We also did a regression analysis of the question-by-
question comprehension rates (averaged across subjects)
versus compression rate. As expected, with linearly com-
pressed speech, comprehension fell with increased compres-
sion: m = –0.26,9 r  = –0.32,10 t158 = 4.20, p < 0.001. In
contrast, with Mach1-compressed speech, there was no sig-
nificant comprehension loss with increased compression.
Furthermore, the difference in comprehension rates between
Mach1-compressed and linearly compressed speech
increased with increasing compression rate: m = 0.34,
r  = 0.42; t158 = 5.81, p < 0.001 (Figure 3). There were no sta-
tistically significant correlations between comprehension
and speaking (wpm) rate.

In the preference section, Mach1-compressed speech
was chosen 94.8% of the time over linearly compressed

8 The probabilities reported in Table 1 use the Bonferroni t’ distri-
bution [Howell92] for the five planned comparisons: They are five
times higher than would be given by the unmodified t distribution.
9 This slope value, m = –0.26, means that, on average, the compre-
hension was 26 percentage points lower for each unit increase of
compression.
10 The correlation-coefficient estimate, r, is tested for significance
using  as its standard error [Howell92].1 r2–( ) N 2–( )⁄

speech, for identical global compression rates. This prefer-
ence rate is clearly different from random selection
(t12 = 21.9, p < 0.001). There was a positive correlation
between compression rate and Mach1 preference rate:
m = 0.10, r  = 0.56, t38 = 4.76, p < 0.001 (Figure 4). There was
no statistically significant correlation between Mach1 pref-
erence rate and the corresponding speaking rates.

 4   CONCLUSIONS
Mach1 offers significant improvements in comprehension
over linear compression, especially at high compression
rates: Comprehension improved by 17 percentage points
when Mach1 was used instead of linear compression, at the
same global rates. The difference in comprehension rates
between Mach1-compressed and linearly compressed
speech increased with increasing compression rate. Listen-
ers preferred Mach1-compressed speech over linearly com-
pressed speech 95% of the time. The preference for Mach1
increased with increasing compression rate.

Short dialogs provided the greatest improvement in
comprehension, averaging 23 percentage points. The com-
prehension improvements were less with the longer clips:
10 percentage points with monologs and 5 percentage points
with long dialogs. The large comprehension improvements
on short dialogs was due mostly to lowered comprehension
of the linearly compressed speech. Since the short dialogs
(averaging 23 words) are significantly shorter than the other
clips (averaging 144 and 187 words for the long dialogs and
monologs), one possible explanation for the lower compre-
hension of the linearly compressed short dialogs is that the
most information is lost at the beginning of the clips, while
the subjects adjust to the unnatural speaking style. The
absence of a similar decrease in comprehension of Mach1-
compressed short dialogs suggests that the listener-adjust-
ment period is much shorter when Mach1 is used.

The comprehension improvements with Mach1 were
statistically significant for short dialogs and for monologs.
The improvement for long dialogs was not statistically sig-
nificant. This failure to attain statistical significance may be
due to the small test population. Another possibility is there
may be confusing interactions between Mach1 and the turn-
taking techniques used in conversation. These interactions
could have been masked in the short dialogs by the heavily
reduced comprehension of linearly compressed speech.

It is interesting to note that, with Mach1 compression,
there was no statistically significant loss in comprehension
as a function of compression rate.11 One hypothesis for the
uniform comprehension results across achieved compres-

11 In fact, there was a slight increase in comprehension for the
higher compression rates: m = 0.08. However, the correlation coef-
ficient for this increasing trend, r  = 0.14, was not statistically sign-
ficant (t158 = 1.76, p = 0.08).
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Figure 4: Plot of Mach1 preference rate as a function of
compression rate. The results of linear regression are shown
as a solid line.
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sion rates is that Mach1 is doing a fairly good job of captur-
ing the relative compressibility of each audio clip in the
audio tension. Mach1 itself determined the distribution of
compression rates: it was given a nominal compression tar-
get of 3 times real time but was allowed to deviate from that
target according to the results of the audio tension calcula-
tions on each clip. In some sense, Mach1 may be providing
“a predictable overall comprehensibility” instead of provid-
ing “a predictable overall compression rate”.

Variable-rate compression of speech is a promising
direction in time-scale modification. It should allow us to
improve our comprehension rates using approaches sug-
gested by linguistic and text-to-speech studies. It leaves
open the question of how best to measure paralinguistic
qualities, such as emphasis and relative speaking rate. The
Mach1 approach avoids categorical labels and relies on eas-
ily measurable acoustic correlates. This approach has
proved fruitful, conferring significant improvements in com-
prehension over linear compression.

ACKNOWLEDGMENTS
We thank Gerald McRoberts and Dan Levitin for their
advice on designing the listener test, Jennifer Orton for run-
ning the listener tests, Jennifer Smith for her guidance and
work in statistical analysis, and Tom Ngo and Lyn Dupré for
their editing. We also thank all our listener-test subjects who
gave us an hour of their time and attention, so that we could
test our approach.

REFERENCES
B. Arons, 1994. “Interactively Skimming Recorded

Speech,” Ph.D. dissertation, Massachusetts Institute of
Technology, Boston, MA.

F. Chen, M. Withgott, 1992. “The Use of Emphasis to Auto-
matically Summarize a Spoken Discourse,” IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing, Vol. 1, pp 229–232, San Francisco, CA.

C. Fulford, 1993. “Can Learning be more Efficient? Using
Compressed Audio Tapes to Enhance Systematically
Designed Text,” Educational Technology, 33(2): 51–59.

S. Furui, 1986. “On the Role of Spectral Transition for
Speech Perception,” Journal of the Acoustical Society of
America, 80(4): 1016–1025.

P. Gade, C. Mills, 1989. “Listening Rate and Comprehen-
sion as a Function of Preference for and Exposure to
Time-Altered Speech,” Perceptual and Motor Skills,
68(2): 531–538, 1989.

D. Howell, 1992. Statistical Methods for Psychology, Dux-
bury Press, Belmont, CA.

P. King, R. Behnke, 1989. “The Effect of Time-Compressed
Speech on Comprehensive, Interpretive, and Short-Term

Listening,” Human Communication Research, 15(3):
428–443.

S. Lee, H. Kim, et al., 1997. “Variable Time-Scale Modifi-
cation of Speech Using Transient Information,” IEEE
International Conference on Acoustics, Speech, and Sig-
nal Processing, Vol. 2, pp 1319–1322, Munich.

B. Moore, 1995. Hearing, Academic Press, San Diego,
1995.

S. Roucous, A. Wilgus, 1985. “High Quality Time-Scale
Modification for Speech,” IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, Vol.
2, pp 493–496, Tampa, FL.

M. Rymniak, G. Kurlandski, et al., 1997. The Essential
Review: TOEFL (Test of English as a Foreign Lan-
guage), Kaplan Educational Centers, New York.

K. Stevens, 1980. “Acoustic Correlates of Some Phonetic
Categories,” Journal of the Acoustical Society of Amer-
ica, 68(3): 836–842.

L. Stifelman, 1997. “The Audio Notebook: Paper and Pen
Interaction with Structured Speech,” Ph.D. dissertation,
Massachusetts Institute of Technology, Boston, MA.

J. van Santen, 1992. “Contextual effects on vowel duration,”
Speech Communication, 11(6): 513–546.

J. van Santen, 1994. “Assignment of Segmental Duration in
Text-to-Speech Synthesis,” Computer Speech and Lan-
guage, 8(2): 95–128.

M. Withgott, F. Chen, 1993. Computational Models of
American Speech, CSLI Lecture Notes #32, Center for
the Study of Language and Information, Stanford, CA.


