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Abstract. Much of the recent success of neural networks can be attributed to the
deeper architectures that have become prevalent. However, the deeper architec-
tures often yield unintelligible solutions, require enormous amounts of labeled
data, and still remain brittle and easily broken. In this paper, we present a method
to efficiently and intuitively discover input instances that are misclassified by
well-trained neural networks. As in previous studies, we can identify instances
that are so similar to previously seen examples such that the transformation is
visually imperceptible. Additionally, unlike in previous studies, we can also gen-
erate mistakes that are significantly different from any training sample, while,
importantly, still remaining in the space of samples that the network should be
able to classify correctly. This is achieved by training a basket of N “peer net-
works” rather than a single network. These are similarly trained networks that
serve to provide consistency pressure on each other. When an example is found
for which a single network, S, disagrees with all of the other N − 1 networks,
which are consistent in their prediction, that example is a potential mistake for S.
We present a simple method to find such examples and demonstrate it on two vi-
sual tasks. The examples discovered yield realistic images that clearly illuminate
the weaknesses of the trained models, as well as provide a source of numerous,
diverse, labeled-training samples.

1 Introduction

The recent rapid resurgence of interest in deep neural networks has been spurred by state
of the art performance on vision and speech tasks. However, despite their impressive
performance, the deeper architectures require enormous amounts of labeled data and
are surprisingly fragile. Additionally, because the training is done through following
derivatives in high-dimensional spaces and often through ad-hoc architectures and input
groupings, the results can be unintelligible with surprising error modes [9, 13, 16].

The three problems of needing vast amounts of training data, being brittle, and
being unintelligible are interrelated. In this paper, we address them by finding high-
value mistakes that the network makes. A high-value mistake is one where the network
is expected to perform correctly and does not – e.g., the input lies in the space of realistic
inputs for the task and yet is misclassified. Finding where these mistakes are likely to
occur yields insight into the computation of the network. These mistakes can also be
used to further augment the training set to mitigate the brittle decision boundaries that
may have been created with only the original training examples. Figure 1 provides a
visual example of high-value and low-value mistakes for the familiar MNIST dataset.
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It shows examples that are classified perfectly by a trained network, examples that are
misclassified, but should be classified well (high-value mistakes), and examples that are
not classified well, but are outside the set of examples the network is trained on (low-
value mistakes). If too many low-value mistakes are used for retraining the networks,
or any machine learning classification tools, they face the problem of artificial concept
drift [15]; the training examples no longer become representative of the actual problem.

Fig. 1: (Left) 49 digits that the network classified correctly. (Middle) Examples of high-
value mistakes generated by our method. They are digits that should be classified cor-
rectly, since the images are of the same type as the training images. (Right) Examples of
low-value mistakes. They all contain individual pixel-based noise which, though small,
is not representative of the types of images the network was designed to recognize.

Through the last three decades, a variety of approaches have been explored to un-
derstand the performance of neural networks and to generate new examples based on
their encoded computations. In a broad sense, the approach taken here is behaviorist
in nature. We do not look at the internal states of the network to determine how it will
perform; instead, we observe how the network responds to different inputs. Similar ap-
proaches were described in [1,7]. Alternative approaches interpret the internal states of
a neural network by discovering what the hidden units and layers encode [3, 13, 14].

The remainder of the paper is structured as follows. Section 2 details the proposed
method for finding high-value mistakes; a simple, two-dimensional, example is pro-
vided to concretely demonstrate the algorithms. Section 3 describes experiments on the
10-digit MNIST database. Section 4 describes experiments with state-of-the-art net-
works trained to classify real-world images into 1,000 categories. Section 5 presents
further experiments to illuminate limitations of the approach. Finally, Section 6 con-
cludes the paper and presents directions for future work.

2 Using Peer Networks to Find Inconsistencies in Training

The underlying decision boundaries inferred by well trained classification models de-
pend on a number of factors: the training examples used, the learning algorithms em-
ployed, the exact architecture and form of the trained models, and the proper use of
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validation sets and hold-out sets, to name a few. With neural networks, further un-
predictability in the decision boundaries arises because the training is sensitive to the
order in which the examples are presented, the initial weights, and the numerous hyper-
parameters associated with typical training algorithms such a backpropagation.

With this in mind, consider the simple two-class problem of classifying points on a
checkerboard: does a given point fall on a red of black square? This is a version of the
X-OR problem often used with neural networks; see Figure 2.

Fig. 2: (Left) A toy two-dimensional, two-class, classification problem. (Right) 200 ran-
domly selected samples used for training a network (100 from each class).

To concretely show the different learning boundaries created, five neural networks
with 10, 12, 14, 16 & 18 units per hidden-layer were trained on 200 sample points. Each
network had two inputs (x and y coordinates), 2 fully-connected hidden layers, and 1
output classification node. The inferred classification boundaries are shown in Figure 3.

Fig. 3: Decision boundaries of the five networks trained on the toy task in Figure 2.
Close inspection reveals many differences.

Though this variability may be initially considered a limitation in training, an enor-
mous amount of research has already shown the benefits of using these individual net-
works as members of an ensemble classifier (e.g., [4]). In ensemble methods, the out-
puts of multiple networks are combined through any number of voting schemes to out-
put the final classification. In contrast to typical ensemble methods, this study uses the
variability in networks to find potential mistakes.

In this simple example, for any target network, A, we scan through valid values of
x & y to find points where A disagrees with all of its peers (the other 4 networks). Such
points are good candidates for new training examples for network A because all of the
other similarly trained networks were able to classify them correctly (see Figure 4). The
labels for these points can either be provided as a supervisory signal (analogous to an
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Fig. 4: Sample points where each network disagrees with all of its peers. Note that each
falls near the decision boundaries shown in Figure 3.

active learning approach where the learner requests labels for selected instances [2]) or
can be supplied by the consistent labeling generated by the peers.1

The toy 2-D example allows complete exploration of the input space. However, for
more realistic problems, such as image classification one cannot consider the set of all
potential input images. Not only is the space of possible images too large, but the set of
all images is vastly dominated by unrealistic pixel combinations (e.g., white noise) that
will not appear either during training or inference.

Instead, to find high-value-examples, we must either have a set of promising can-
didates (e.g., a repository of unlabeled data) or we can synthesize extra instances from
known good images. With both of these approaches, we use the consistent classification
of the peer networks as a filter to select images. For the MNIST task, we take the lat-
ter approach: we search the space of transformations on image X for an input image X ′

where for a given network A and ∀ networks pi, pj , pk ∈ peer networks {B, C, D, E},
we attempt to find examples X ′ that simultaneously:

min{DIST(pi(X ′), pj(X
′))} and max{DIST(A(X ′), pk(X

′)},

where DIST(pi(X ′), pj(X
′)) is the magnitude of the difference in classifier outputs

between networks pi and pj when applied to X ′ (this is minimized to ensure consistency
between peers). DIST(A(X ′), pk(X

′)) is the magnitude of the difference between the
target network, A, and its peers (maximized to ensure A and its peers are different).

How do we find this image? Naively sampling random images to find one that max-
imizes/minimizes these two objectives simultaneously would be prohibitively slow. In-
stead, we search through the space of potential images by stochastically perturbing an
example digit to satisfy the above constraints. The algorithm in its simplest form is
described in the procedure below.

Illustrating using the MNIST example, we start by randomly selecting a digit image
from the training set (seed). We also randomly generate a small affine transformation
(e.g., small rotation, translation, stretch). If applying this transform to the seed increases
the difference between the output activation of the target network and its peers (with
the peers still agreeing on their prediction), then we keep the transformed image and
use it as the seed for the next iteration. We compose transforms in this manner until we
either find a sequence of transforms that causes a misclassification by the target network
(with peers still classifying correctly) or until we try too many transforms for the given
seed — in which case we restart with a new seed image drawn from the training set.

1 This raises the question: The worst performing network in the set will likely see improvement
using this method, but will all the networks? This is an immediate area for future research.
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– Start with seed image, X . If X is not classified in the same class, C, for all of the
networks, find a different seed.

– done = False
– while (not done):
• Generate a candidate, X ′, with a stochastically chosen constrained image

transform on X .
• If X ′ is not classified in the same class, C, by all the peers, reject X ′.

(this ensures consistency of peers).
• Else: Measure network-A activation w/input X ′ for class C: A(X ′)C .

If (A(X ′)C < A(X)C ) then accept X ′ ; X ← X ′

Else: Reject X ′.
• done = network-A classifies X ′ sufficiently differently than peers do.

e.g., minimize A(X ′)C where ∀P ∈ Peers, P (X ′) = C.

Note for labeled data: In the cases where we know the label L of initial image X , we
simply ensure that C = L throughout the run.

Alternatives to next-ascent hillclimbing include more sophisticated search heuris-
tics. Evolutionary algorithms such as genetic algorithms, population-based incremental
hillclimbing or other evolutionary strategies may be used to search the space of image
transforms; see [10]. Like hillclimbing, these quickly search discrete spaces without the
need for derivatives [1, 7].

In the next section, we apply the proposed algorithm to networks trained to recog-
nize MNIST digits. To keep our experiments reproducible, we use simple hillclimbing
as the search mechanism. Because of space restrictions, we only note there that we have
also successfully applied several other evolutionary algorithms on this task with simi-
lar qualitative results, although the efficiency varied greatly depending on the specific
algorithm and search heuristics.

3 Result Set I: The MNIST Digit Database

For the experiments with MNIST [8], 60,000 digit images were used for training five
different networks. Other than the number of hidden units in the networks (10, 20, 30,
40 & 50), the networks were identical and trained identically. Samples from the MNIST
database are shown in Figure 1.

Figure 5 shows a typical hillclimbing session to obtain mistake images. Within five
transformations (starting from the top), the target network misclassifies the digit ‘9’ as
a ‘3’ with high confidence, yet its peer networks confidently predict the correct class
for all transformations. Note that the sequence of constrained transforms results in an
image that is still unambiguously a ‘9’ for humans.

This image is a high-value mistake because the target network strongly misclassifies
it while its four peers are confident in the correct prediction. Based on the sequence of
transforms that generated this mistake, it appears as though the target network may be
susceptible to small amounts of shrinking, to which its peers are robust. Adding this
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Fig. 5: A typical hillclimbing session.
The leftmost of the bars in each group
(blue) is the output activation of the
target network. The four other bars
(green) show the peers’ activations.
Top row: the ‘9’ is correctly and con-
fidently classified by all networks (all
activations are close to 1.0). Bottom
row: within five operations, the target
network misclassifies the ‘9’ as a ‘3’,
but its peers continue classifying it cor-
rectly with high confidence.

mistake to the target network’s training set may help to make it more robust to such
transforms. Additional examples are shown in Figure 6.

On average, only five small transforms were required to change a training image into
one that is incorrectly classified. However, many more candidate images were evaluated
by the networks in the process of finding this sequence of five moves. This is typical
with stochastic search; the other candidates were rejected because they did not improve
the objective function.

To give an indication of how much effort it takes to find a potential mistake, in Ta-
ble 1, the results with over 1,000 trials per network are shown. In the first row, network
A was chosen as the one for which errors were found, and networks B, C, D, and E
were chosen as its peers. For each of the 1,000 trials, a random digit was selected as
a seed and next-ascent-stochastic hillclimbing was used to search the space of affine

Fig. 6: Three hillclimbing sessions. Left: ‘7’ mistaken as ‘2’ in 7 image transformations.
Right-Top: ‘0’ mistaken as ‘5’ in 4 moves. Right-Bottom: ‘8’ mistaken as both ‘1’ and
‘6’ within only 3 moves. Note that in all of these examples, the peers still correctly
identified the digit, while the target network did not.
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Table 1: Inferences and moves required to find a high-value mistake per network
Target network Hidden Nodes % Successful Trials # moves # forward inferences

(average over successful trials)

A 10 63% 5 507
B 20 25% 5 640
C 30 9% 6 852
D 40 5% 6 801
E 50 7% 6 819

image transformation. 63% of the trials resulted in a mistaken classification (Figure 5,
Figure 6). These 630 sequences are labeled successful. Trials in which 250 consecutive
transformations were tested without improvement were marked as unsuccessful.

The last column shows the number of forward inferences needed on the successful
trials through the five networks. On average, 507 forward inferences were required per
successful trial. As there are a total of five networks, this is approximately 101 forward
inferences through each. This means that, for the successful trials, on average, 101
image transformations were also created and tested through the hillclimbing procedure
before the transformation sequence that led to a high-value mistake was found.

The next rows in Table 1 repeat the same process for each of the other networks. For
example, in the last row network E is considered the primary network and its peers are
networks A, B, C, and D. This is the largest network of the ones tried, with 50 hidden
units. Note that the procedure has a lower success rate in terms of mistakes found and
requires more forward inferences. In general, the more robust the target network, the
harder it is to find errors that other, worse performing, networks do not also make. In-
terestingly, although the hillclimbing procedure had to search longer, the average length
of the transform sequence needed to generate a high-value mistake only rose to six.

4 Results Set II: Deep Vision Networks

We present some early results on applying peer pressure on the ImageNet [11] dataset.
We trained five convolutional neural networks on the ImageNet training set to classify
a given image into one of 1000 categories (synsets). Unlike in the MNIST experiments
in Section 3, where the peers had slightly different architectures, all of the GoogLeNet
networks employed the same GoogLeNet architecture [12]. GoogLeNet consists of a
series of Inception modules shown in Figure 7 (Top) connected in the very deep struc-
ture, illustrated in Figure 7 (Bottom).

The input layer was a 224×224 RGB image. The inputs automatically subtracted the
mean from the image as the first normalization. All units, including those in the Incep-
tion modules used rectified linear units (ReLU) as the nonlinearity. Given the challenge
of propagating gradients through its significant depth (27 layers), GoogLeNet employs
auxiliary classifiers, shown as side branches ending in “SoftMax” units in Figure 7, that
connect to intermediate layers and boost the loss signal to provide data-driven regular-
ization. For additional details about GoogLeNet, see [12].
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The networks were explicitly trained to be robust to common image transforma-
tions, such as cropping and rotation by sampling crops from the original image at var-
ious sizes (8%–100%), aspect ratios (3/4–4/3) and photometric distortions [6]. Some
of the transforms that can be handled are shown in Figure 8 (LEFT). Note the severe
shearing, large black borders, rotation and color and intensity variations.

Fig. 7: (Top) A single Inception module. (Bottom) The GoogLeNet image classification
network is built from many such modules. In this diagram, the pairs of “DepthConcat”
units that are connected by heavy green lines are shown as pairs to make the diagram
easier to fold — there is a single “DepthConcat” unit at each of these fold locations.
Diagrams adapted from [12] with permission.

With such robust training, we initially believed that it would be difficult to find
images that cause a single network to fail without also impacting the accuracy of its
peers. However, in practice, this proved to not be the case. See Figure 8 (RIGHT).
Each network had unique failure modes despite the observed resistance to numerous
image transformations. Network 1 (shown) was often sensitive to lighting cues. Other
networks’ failures sometimes exhibited differences to individual classes; for example,
varying degrees of robustness were exhibited with camera images than with hammer-
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head sharks. Because of space restrictions, we only show the failure modes for a sin-
gle network; however, all networks proved susceptible to the this mistake generation
method, enabling us to quickly generate high-value training images for each network.

Fig. 8: (LEFT) All five networks are successfully trained to be robust to many severe
transformations. The original image and the 8 transformed images are all classified cor-
rectly by all five networks. Note the variations in rotation, lighting, crop, the presence of
black borders, etc. (RIGHT) For each column - left: original image, right: transformed
image that the hillclimbing procedure found that caused an error for the target network.
In this case, Network 1 (shown) was very sensitive to lighting conditions especially
when coupled with small rotations or crops. Note that all the peers correctly classified
these samples; thereby making these high-value mistakes for Network 1.

5 Limitations, Discussion and Further Experiments

In this section, we present two extra experiments conducted in the design of the algo-
rithm. They are included to elucidate both the limitations and potential of our work.
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One of the implicit assumptions throughout this paper has been that whatever is
done for a network A with peers B, C, D, and E can be equivalently done for network
B with peers A, C, D, and E. Thus, each network can serve as a peer for the other
networks. In the next example, we seek a seed image from the training set, X , that
can be transformed such that every network, in turn, will make a mistake on it while its
peers maintain the correct classification. Of course, the sequence of transforms required
will be different to drive each network to an error. Two such input images and their
transformations are shown in Figure 9. Note, in general, we do not need to use the same
image as a seed for different networks; however, this demonstrates that it is possible.

Fig. 9: (Left) The number ‘2’ is mistaken by network A as a ‘1’, by network B as ‘1’,
network C as ‘6’, network D as ‘3’ and network E as ‘3’. To find an error for each
network, different transform sequences are found. (Right) Similar results for ‘9’.

Finally, it is important to explore the limitations of the proposed approach. In the
experiments described above, we used small affine image transforms as the perturbation
operator. These generate images that look reasonable by using the peer networks to
ensure that radical transforms are suppressed (e.g., successively rotating a ‘6’ until it
becomes a ‘9’). This suggests a natural question: can peer pressure ensure that we only
generate realistic images as mistakes?

We replaced the affine transforms in the proposed method with simple pixel swaps.
Applying a sequence of pixel swaps to a seed image quickly yields noisy images that fall
outside the domain of realistic inputs for this task. Nguyen et al. [9] examined similar
effects (without the use of peers) in the extreme: white noise images that were classified
incorrectly by trained networks. Unlike our study which attempts to find images that the
network may encounter in practice, [9] showed that images far outside the training sets
may be classified incorrectly with high confidence. We wanted to see whether peer
pressure alone would suppress such images from being generated as valuable mistakes.

Unfortunately, as shown in Figure 1 (right), given the pixel swap operator, our
method is able to find unrealistic images that are correctly classified by peers and mis-
classified by the target network. If the underlying image transformations are small, it is
possible to “poke holes” in the target network’s training in the precise locations where



Peer Pressure 11

they have little effect on the peers. Naively adding such images to the training set would
be inadvisable as they are unlikely to help on the original task.

The benefit of peers is not lost, however. Peers make it more difficult to create such
a mistake. We can examine the effect of peers by attempting to find a mistake in the
network A with no peers, with 1 peer, etc., up to 4 peers. See Table 2.

Table 2: Effects of peers on difficulty of finding unrealistic mistakes
Number of peers Successes (of 300) #number of transforms

0 299 36
1 145 37
2 96 39
3 72 40
4 57 41

As can be seen in the table, without peers, 299/300 hillclimbing attempts trans-
formed the seed image into a low-value mistake. This means that almost every run
generated an unrealistic instance. The average number of pixel swaps it took to find the
mistake was 36. For comparison, recall that the average number of affine transforms
with 4 peers for MNIST was 5–6 moves. When peers are added, the number of success-
ful trials drops sharply. With 4 peers, only 57 of 300 trials were successful in finding
a mistake, and the average number of swaps increased to 41. This indicates what we
hoped: having peers decreases the likelihood of escaping a reasonable input space.

6 Conclusions & Future Work

The successes of neural networks in real-world tasks has increased the need for finding
ever increasing amounts of training data as well as finding insights into what the net-
work has learned, and importantly, where it will fail. In this paper, we have shown that
by training multiple “peer” networks to solve the same task, the inherent, unique, biases
that are learned in the networks can be used to find mistakes that each network should
have classified correctly. The mistakes lie within the space of examples that can be rea-
sonably expected to be seen; thereby yielding valuable insights into the limitations of
the trained models.

There are five immediate directions for future work. The most pressing is extending
this work by augmenting the training of the networks with the generated high-value
mistakes. To accomplish this, many decisions need to be made; for example, how are
the new images weighted, and how frequently should they be introduced into training?
Second, the effect of increasing the number of peers should be studied. Does adding
more peers increase reliability at the expense of mistake coverage? Third, if all the
networks were trained by using each others as peers, would they eventually reach a
steady state and how soon would this happen? Does this then mimic the effects of using
the ensemble for voting, and does this effectively become a technique for ensemble



12 S. Baluja, M. Covell, R. Sukthankar

compression [5]. Fourth, instead of using stochastic search, if appropriate derivatives
can be created for an input transformation layer, that will yield an alternate way to find
meaningful mistakes. Finally, only the simplest search algorithm was employed here;
other multi-point search algorithms should also be evaluated for increased efficiency.
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