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Abstract—Decades of research have been directed towards
improving the timing of existing traffic lights. In many parts of
the world where this research has been conducted, detailed maps
of the streets and the precise locations of the traffic lights are
publicly available. Continued timing research has recently been
further spurred by the increasing ubiquity of personal cell-phone
based GPS systems. Through their use, an enormous amount
of travel tracks have been amassed — thus providing an easy
source of real traffic data. Nonetheless, one fundamental piece of
information remains absent that limits the quantification of the
benefits of new approaches: the existing traffic light schedules and
traffic light response behaviors. Unfortunately, deployed traffic
light schedules are often not known. Rarely are they kept in a
central database, and even when they are, they are often not
easily obtainable. The alternative, manual inspection of a system
of multiple traffic lights may be prohibitively expensive and
time-consuming for many experimenters. Without the existing
light schedules, it is difficult to ascertain the real-improvements
that new traffic light algorithms and approaches will have —
especially on traffic patterns that have not yet been encountered
in the collected data. To alleviate this problem, we present an
approach to estimating existing traffic light schedules based on
collected GPS-travel tracks. We present numerous ways to test the
results and comprehensively demonstrate them on both synthetic
and real data. One of the many uses, beyond studying the
effects of existing lights in previously unencountered traffic flow
environments, is to serve as a realistic baseline for light timing
and schedule optimization studies.

I. MOTIVATION AND BACKGROUND

One of the largest complaints of commuters in the Moun-
tain View, California area is the amount of traffic they face
during the morning and evening rush hours. One of the
problem areas, controlled by seven main lights, is shown in
Figure 1. The goal of our project is to evaluate the timing of
the traffic lights on these intersections and also improve them
through either better control algorithms or improved sensors.
The preliminary results of that study are presented in [6].
One of the issues that we repeatedly encountered (not just
in Mountain View) was the difficulty in obtaining the actual,
currently installed traffic-light programs.

When the task of traffic-light optimization is undertaken,
the data for the physical placement and layout of the roads and
highways is often publicly available through such providers
as OpenStreetMap [9]. Additionally, with the rising ubiquity
of cell phone GPS and maps usage, user travel tracks are
often voluntarily given by users to improve destination arrival
prediction and update traffic information [3]. Even when
anonymized, these travel tracks can provide the basis for

Fig. 1: Initial area to be optimized around the Mountain View,
California area. A rush hour traffic flow shown (using Google
Maps.)

extensive traffic flow estimation. One fundamental piece of
information remains absent that limits the quantification of
the benefits of potential new schedules or new algorithms: the
existing traffic light schedules and behaviors. Unfortunately,
deployed traffic light schedules and offsets are often not
known. Rarely are they kept in a central database, and even
when they are, they are often not always obtainable. The
alternative is to manually inspect a system of multiple traffic
lights; for lights on fixed schedules this may be theoretically
feasible, but will likely be prohibitively expensive and time-
consuming to do at scale. Nonetheless, without the existing
schedule information, it is difficult to ascertain the real-
improvements that new traffic light algorithms and approaches
will have — especially on traffic patterns that have not yet
been encountered in the collected data.

An enormous amount of research has been devoted to
optimizing traffic light schedules through a variety of machine
learning techniques spanning genetic algorithms [11], [14]–
[16] to reinforcement learning [1], [2], [17]. Unfortunately,
comparatively little work can be found on determining the



current deployed light schedules. In this paper, we apply the
same machine learning approaches used for light optimization
to discovering the deployed schedules. We take a behaviorist
approach: we attempt to set the light schedules for all the
lights in the system we wish to model to best match known
car travel timings that we have observed through travel tracks.
We attempt to model the overall behavior of the system rather
than modeling each light independently.

In the next section, we describe the data collected and
the algorithms used. We demonstrate the procedure first on
synthetic data (Section III) to get a deeper understanding of its
operation, and then apply it to real data (Section IV). Section V
presents numerous alternative implementations and extensions.
Section VI closes the paper with a discussion of the limitations
of this approach and suggestions for future research.

II. DATA AND ALGORITHMS

For the real-world experiments, two sets of data are needed:
the roadway information (layout, speeds, etc.), and travel track
information. To gather the road information, we combined
the data available from Google maps and OpenStreetMap [9].
The results provided reasonable roadways as well as traffic
light locations, as shown in Figure 2. The figure shows the
maps as rendered by the traffic simulator, SUMO [13]. To
ensure that our results are widely reproducible, all of our
experiments conducted in this paper use SUMO (Simulation
of Urban MObility), which is open-source and can be freely
downloaded [7].

In addition to accurate road information, we need a realistic
demand profile for each road section. We use a demand
profile that reflects the reality of that section of the roads
by using anonymized location data collected from opted-in
Android users [3]. The raw data, which itself does not include
personally identifiable information (PII), is also scrubbed to
further reduce identifiability risks.

From this data, we select data with tracks that intersect with
the map area that we will use in our simulations. We also filter
by time, limiting to looking at a given start and end date – in
particular around rush hour periods. We then alias all the given
times down to the weekday and time of day (e.g., Tuesday 7am
local time). This provides a close-to-realistic profile of the road
demand by allowing us us to “overlap” several weeks worth
of data. This is required to compensate for the fact that not all
drivers are opted-in Android phone users.

Before working with the real data described above, we
tune our algorithms on an entirely separate, independent, set of
data. This is done to ensure that our algorithms are not overly
tuned to only a single data set. To begin our experiments, we
create a smaller, synthetic, data set. This has the advantages
of being noise-free and completely within our control so we
that can alter it in known ways to examine different aspects of
matching. For the synthetic data, 3200 cars were instantiated
over a period of 4000 seconds to travel along the simple
grid shown in Figure 3. The speed limit for each segment
was chosen independently and randomly, and seven types
of car were instantiated, with differing profiles in terms of
acceleration/deceleration, following distance, length, etc.

Each simulated car’s path was chosen to randomly start
and end at any edge node. The only constraint in the path was

Fig. 2: Roadway data imported into SUMO simulator [13].
Top: Area we are considering. Bottom: expanded region;
yellow triangles represent the cars and the traffic that is often
present.

that no intersection could be visited twice. The launch times
for the vehicles was uniformly randomly distributed over the
4000 seconds.

To obtain the analogous travel tracks within this synthetic
grid, the full 3200 traffic load was simulated in SUMO; the
path and start+end times of each car’s journey were recorded.
The light settings that were used for this initial synthetic data
creation are described in the next section.

A. Matching Algorithm

Because the numerous parameters associated with traffic
light schedules can have a large impact on overall perfor-
mance, many studies have used automated machine learning
techniques to set them. For example, even in the simplest case
of traffic lights on fixed schedules, for each light, the length
of the phases and the light’s offsets have a large impact on



Fig. 3: Three views of the synthetic roadway. Overview (Top).
The number of lanes varies between 1 and 3 in each direction.
Cars can be introduced and exit at any of the twelve outer
edges. Lights are at located at each of the nine intersections.
Middle and Bottom: Typical traffic at two intersections shown
enlarged.

the performance of the system. Perhaps the most common
approach seen in traffic light optimization literature is the use
of genetic algorithms (GA) [8] to set the numeric or enumer-
able values associated with traffic lights [15] [14] [16] [11].
However, this has been for the purpose of changing the traffic
lights’ schedules, not for the task at hand: matching a pre-
existing schedule.

Nonetheless, the approach can easily be modified to
achieve our goal. A genetic algorithm is a type of stochastic
search technique that relies on a repeated candidate-generation
and evaluate methodology to guide search. The evaluation of
the candidate traffic light schedules is controlled by setting an
objective function that usually measures a characteristic about
the system’s traffic flow such as mean-wait time, maximum
wait time, emissions, fewest stops, etc. Instead of using these
traditional objective functions, we specify the following objec-
tive function (minimization):

min
∑
c∈C
|JourneyTimeh(c)− JourneyTimea(c)|, (1)

where h and a are the hypothesized and actual light settings,
respectively, and C denotes the set of cars in the simulation.

Minimizing this objective allows us to determine light
settings that generate a simulated traffic flow that closely
mirrors the actual flow through the same road network. Note
that although the constraint is not explicitly specified in Eqn. 1,
the cars are all introduced into the system in the same order
and at the same times as they were observed in the actual data;
this is the only way for traffic congestion, etc. to be emulated
correctly.

Once this new objective function is specified, the same
parameter estimation or machine learning techniques that were
previously used can be applied. In our first attempt, we used
genetic algorithms and other evolutionary variants as con-
ducted in published research. Despite the prevalence of genetic
algorithms in this domain, we have found a much simpler
mechanism, Next-Ascent Stochastic-Hillclimbing (NASH), that
works as effectively as GAs and is simpler to implement
and faster in practice. This has also been observed by other
researchers in exploring the trade-offs between genetic algo-
rithms and hillclimbing [10]. This somewhat surprising result
is especially pronounced in problems in which mutation (as
opposed to crossover) is the main driver for improvement in
the solution — as we have found to be the case for this domain.

As with any stochastic optimization technique, GA, NASH
or other evolutionary algorithms, we start with specifying the
set of parameters that can be modified.1 For the experiments
presented in the remainder of the paper, we initialize the search
with a set of reasonable phases, durations and offsets (simply
the ones that SUMO uses by default) and then use NASH to
adjust each light’s phase duration and offset to create a set of
light controllers that mimics, as closely as possible, the travel
times of the actual cars.

NASH operates as follows. A parameter is randomly cho-
sen from the set of parameters that are allowed to be changed

1For simplicity, for the studies presented in this paper, we assume that the
actual traffic lights can be modeled with fixed schedules. As discussed later
in the paper, feedback from induction loops also fits naturally within this
procedure.



and the modification operator for that parameter is applied.
In the simplest case, if the parameter is a real number, it
is perturbed by a small amount (for example ±5%). If the
parameter can take on a set of distinct values, a value different
than the current one is randomly selected. Once the parameter
modifications are made, the schedule is then “repaired,” if
required. The repair process ensures that the parameters are
consistent with each other and are set within realistic ranges.
For example, in the case of fixed-schedule light settings, we
may want to ensure that the overall cycle time of the light
remains constant to keep all the lights coordinated, but the
individual phase lengths within the cycle can change. In this
case, once a phase length perturbation has been made, the
repair process ensures that the other other phase lengths are
reduced appropriately to compensate and keep the overall cycle
length static.

Once any repairs are made, the new schedule is evaluated
with the objective function described above. If the perturbation
improved the performance on the objective function over the
previous settings without the perturbation, the perturbation is
accepted, and the light schedule with the perturbation becomes
the new baseline. If the perturbation has not performed as well
on the objective function, the perturbation is recorded (so that it
is not explored again) and the perturbations are discarded from
the schedule and the previous baseline remains unchanged.

The exact number of perturbations made in each iteration
is chosen stochastically. The maximum number allowed was
determined empirically and varied according to the complexity
of the schedule being developed. The more parameters the
schedule had, the larger the maximum number of perturbations
per step that were allowed. This entire process is iterated until
either a satisfactory solution is found or time expires.

III. EXPERIMENTS I: SYNTHETIC DATA

As mentioned in the previous section, we randomly gener-
ated 3200 travel paths and launch times for cars to travel along
the grid shown in Figure 3. The 3200 cars were simulated in
SUMO with a pseudo-randomized light setting, this is referred
to as the Target-Light-Setting. This light setting was slightly
optimized beyond SUMO’s default light setting to ensure that it
could not “accidentally” be found by NASH simply by running
SUMO and making tiny perturbations to their default light
settings. For the synthetic data experiments, the Target-Light-
Setting corresponds to the settings for traffic lights that we
seek to estimate using the procedures described in this paper.
Given these light settings, we simulated 3200 cars in SUMO
and the distribution of their travel times (target distribution) is
shown in Figure 4 (Top).

The NASH-optimization procedure described in the pre-
vious section was then applied to uncalibrated lights to find
a timing of the cars to approximate these travel times. The
objective function was to match, for each travel path, the
arrival time of the car as closely as possible to what SUMO
yielded with the Target-Light-Setting. Recall that because we
want to emulate not having any a priori information about
the actual light settings, we start the NASH-optimization with
random settings for all the lights in the system. The hope is
that through the search/optimization process, the light settings
that are found will behave the same as those in Target-Light-
Setting. It is interesting to note here that there may be many

Fig. 4: Distribution of travel times for 3200 cars. (Top) Actual
Distribution. We would like to model this target distribution
as closely as possible. (Middle) Lights calibrated with NASH-
optimization. (Bottom) uncalibrated lights. These are lights
with random phases and offsets — presented for comparison.

possible light settings that generate similar aggregate traffic
flow behaviors. As will be shown in later experiments, when
multiple NASH runs are conducted, different, but equally well
matching, light settings may be found.

The progress of the matching algorithm is shown in Fig-
ure 5. Two lines are shown, the bottom line (in red) shows
the best light setting that was found. The top line (in blue)
shows the evaluation of each candidate light setting as search
progresses. From the red line, note that in the beginning
of optimization, the average difference (in seconds) between
when a car reaches its destination with the original Target-
Light-Setting and the approximated light-setting was over 80
seconds. By the end of optimization, this is reduced to 31.8
seconds. Also notice that the blue line is riddled with spikes.
This means that the majority of perturbations to the best-light
setting found to that point yielded matches that performed
significantly worse. Only a few trials, those where the red line
took a step downwards, revealed an improved performance.



Fig. 5: Match Error over successive trials. 2000 trials shown.
Y-axis the average difference in journey times for cars under
the hypothesized light setting and the actual light setting (in
seconds). X-axis: trial number.

These are the steps in which the NASH algorithm accepted a
new baseline from which the optimization then proceeded.

To compare the distributions of travel times to the actual
travel times, see Figure 4 (Middle). As can be seen, the travel
time appear very close. For comparison, if we look at the travel
times for a randomly selected light setting, the distributions
look quite different Figure 4 (Bottom).

We can also measure the correlation of journey times under
the hypothesized light system and the target light system.
Here, we correlate each car’s travel times under both scenarios.
Results are shown in Figure 6. Instead of just correlating a
single trial, Figure 6 also shows the results of 24 additional
tests. We reran the entire NASH-matching algorithm from
scratch 25 times. Because NASH is stochastic and is initialized
with random seeds, we fully expect different schedules to be
found in each run; the hope is that at the end of each run,
the aggregate behavior approximates the target light system
— even if the light settings themselves are not the same. The
correlations of the calibrated systems (found through NASH)
remains high for all trials.

For comparison, 25 uncalibrated (random) light systems are
also shown. It might seem surprising that for random systems
there is any correlation; however, since we are measuring travel
times, even with random light settings, as cars travel through
the entire system, longer paths are likely to have longer travel
times, regardless of the light settings. As can be seen, by
matching the lights through NASH, the correlation of travel
times increases dramatically.

As a final test, we can calculate the correlation of travel
times between all pairs of the 25 NASH derived settings. We
would expect them to be highly correlated with each other.
Figure 7 provides a histogram of those correlations (there are
25×24/2 = 300 correlations in total). Also shown are the 300
correlations for the uncalibrated networks. As can be seen, very
high correlation exists for the calibrated networks and there is
low correlation for the uncalibrated networks.

Next we posit the question: how robust are these matches?
What happens when we severely alter the underlying traffic

Fig. 6: Correlation of calibrated and uncalibrated lights with
actual travel times. Average calibrated correlation = 0.8, aver-
age uncalibrated correlation = 0.5.

Fig. 7: All pairs correlation of 25 NASH-derived light set-
tings (Blue). All pairs correlation of 25 random light settings
(Yellow).

profile? How do the travel times of the new cars compare
in the NASH-calibrated light systems to the original Target-
Light-Setting? If the NASH calibrated light systems were truly
close to the Target-Light-Setting, we would expect a high
correlation to remain under any traffic load, not just the load on
which it was trained. We perform two experiments to measure
this. In the first experiment, 20% of the routes are replaced
with randomly selected new routes; additionally the times for
the deployed cars can be shifted by up to 300 seconds. In
the second experiment, 100% of the routes are replaced with
randomly selected new routes. We measure the correlation of
timings of the cars under the target-light-schedule, the NASH-
derived-light schedules, and the uncalibrated light schedules
(random). The results are shown in Figure 8.

As hoped, under both seen and unseen traffic loads, after
the NASH-optimization procedure is used to estimate the
settings of the lights, we observe that the correlation of travel
times to the original Target-Light-Setting remains high. Next,
we turn our attention to real data. To this point, the study was
conducted in simulation with perfectly clean synthesized data.
In the next section, we evaluate robustness on noisy, real, data.



Fig. 8: (Top) Approximately 20% of routes randomly replaced.
Bottom: 100% of the routes are replaced.

IV. EXPERIMENTS II: REAL TRAFFIC OF MOUNTAIN
VIEW, CALIFORNIA

The results from the previous section with synthetic data
were promising. In this section, we apply the same approach
to the seven traffic lights in Mountain View, California. This is
a much larger and more complex simulation. In the previous
section, the synthetic simulations used 3200 travel tracks. For
these experiments, we use approximately 67,000 tracks. Addi-
tionally, unlike in the synthetic experiments, the distribution of
paths is far from uniform. Backups happen non-uniformly —
only on certain streets in certain directions. Small perturbations
in a single critical traffic light’s schedule can lead to drastic
changes in throughput while large perturbations to the schedule
of a less busy traffic light may generate little observable
impact.

We begin this experiment similarly to the synthetic ones —
we use NASH to match the timings. The progress is shown in
Figure 9. Note that the mean error in times drops quickly. In
the beginning of the optimization process, the error was over
over 400 seconds (this was when the default SUMO traffic
light settings were used for initialization). By the end of the
matching procedure, NASH dropped the error between actual
and matched times to approximately 51 seconds.

Next, similar to the analysis conducted with synthetic data,
we examine the distribution of travel times for the 67,000
tracks. Figure 10 shows the distributions of the tracks for the
real data and the times obtained through a simulation in SUMO
using the NASH-calibrated lights.

Fig. 9: Progress on matching the real traffic using NASH. Y-
axis the average difference in journey times for cars under
the hypothesized light setting and the real-data (in seconds).
X-axis: trial number.

As can be seen the distributions are similar, but as expected,
not as close a match as with the simulated data. The correlation
between the predicted and real times is 0.5. For reference,
when a random light setting is used (the default SUMO
settings), the correlation with the real data is only 0.18.
Recall that with the synthetic data, the correlation of NASH-
Calibrated lights to the actual timings was 0.8 and the random
light settings to the actual timings was 0.5.

There are several important reasons that explain why it was
possible to correlate the synthetic data better than the real data.
First, in the synthetic data, drivers did not have unnecessary
delays in start/stop times due to exogenous factors such as
distraction, change of plans, etc. Second, in the synthetic
data, drivers behaved uniformly at yellow and red lights; this
was not the case for real drivers. Even if the exact correct
light settings were found, these factors would lead to lower
correlations since they would not be modeled. Third, the real
data is significantly more noisy; a problem we did not have
with synthetic data. Recall how the data was acquired and
aggregated over the period of many months (done to account
for the fact that not all drivers are opted-in Android phone
users). This aggregation process leads to noise in the real
data which we are trying to mimic. Interestingly, as usage
of cell-phone GPS/maps increases and more travel track data
becomes available, these estimates will improve. Despite the
above difficulties, we were able to significantly reduce the
average discrepancy between actual and predict times from
approximately 7 minutes to 51 seconds.

As a final test to ensure that NASH actually learned some-
thing about the lights and did not overfit the exact traffic on
which it was retrained, we repeated the experiment with a more
difficult setup. For the NASH optimization procedure, we only
looked at the data from the first 1.5 months of collection. For
testing the timings we tested on a non-overlapping, subsequent,
1.5 months of data. This also represents another common use
and test scenario where a period of time is devoted to training
and then the learned model is used in the future. What we
found indicated that NASH captured the behavior of the lights
and did not overfit the data. The results did not change at all



Fig. 10: Distributions of Real (Top) and NASH-calibrated light travel times (Bottom).

from using the entire 3 months of data. Both the mean error
and overall correlation remained the same as when the entire
3 month period was used for modeling the lights.

V. ALTERNATIVE APPROACHES AND FUTURE WORK

In the experiments presented in this paper, we attempted to
minimize the L1 error – that is the absolute difference between
the time the hypothesized system and the actual system gave
for each car. An alternative is to minimize the L2 error —
the sum of squares difference between the two times. By
using the L2 metric, a stronger penalty is placed on the larger
discrepancies (outliers). The hope is, therefore, that the errors
may be more uniformly distributed instead of allowing some
cars have small errors at the expense of a few with very large
errors. To experiment with this, we returned to the synthetic
data and replaced the error function with L2 error. Similar
to the graph shown earlier (Figure 6), Figure 11 shows the
correlation of lights optimized with L2 with the actual timings.
Both methods, optimizing L1 and L2 yielded approximately
the same correlations with actual.

A second alternative open for future research that may

reveal more accurate timings is to use intermediate checkpoints
on the path. In this paper, we attempted to match the duration
of the travel time for each car as closely as possible; this
was measured by the time it took to reach the traveler’s final
destination. However, with many GPS logs, more detailed
information is available. For example, if the data is available,
the objective function can be rewritten to match times at each
intermediate intersection/road along the path to the destination.
Although this will increase the computational time because of
the increased matching checks required, the algorithm itself
will require minimal changes.

A third alternative to the implementation presented is to
match dynamic traffic light schedules, such as those that
employ induction loops to trigger a change in phase. In the
studies presented, the lights were modeled simply, with fixed
length cycles. However, this is not a fundamental limitation
of the approach. If the presence of an induction loop is
suspected, the light controller’s internal weighting (or any other
parameter) of the induction loop can be specified and therefore
optimized similarly to any other parameter in NASH. This is
currently an effort in progress to potentially further refine the
matches to the real data presented in this paper.



Fig. 11: L2-Correlations.

Fourth, although travel tracks from cell-phone based GPS
systems are becoming more prevalent, other sources of traffic
data may also be used. Research has been conducted on using
cameras to track cars and estimate traffic patterns [4], [5], [12].
If precise timing information is available from such computer-
vision based systems, that information could be used to replace
or augment the travel tracks gathered through GPS.

VI. CONCLUSIONS

For the traffic researcher, two classes of crucial data have
become increasingly available. First, detailed maps of the
streets and the precise locations of the traffic lights is publicly
available through a number of sources. Second, through the
increased usage of personal cell-phone based GPS systems,
an enormous amount of travel tracks have been amassed.
What is often lacking, however, is detailed knowledge of
the existing traffic light schedules and traffic light response
behaviors. Sometimes this information is not recorded or may
be prohibitively difficult to obtain. This paper has presented
a simulation-based approach to approximate the behavior of
installed lights.

Through a simple hillclimbing procedure, we modified the
parameters of the traffic light schedules such that the timing
of known traffic tracks matched the timings obtained with the
predicted traffic light schedules. We attempted to match the
behavior of the system without any knowledge of the actual
internal programs.

We hope that this work can be used by practitioners in
the traffic optimization field in two ways. First, by estimating
traffic light schedules when they are not otherwise available,
the system of traffic lights can be studied (for example in
simulations) under load conditions that have not previously
been seen or yet anticipated. Second, when new algorithms
or schedules are devised, having at least a basic behavior-
based representation of the current traffic lights will hopefully
provide a better, and more realistic, baseline from which to
start the evaluation.
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