
Point Representation for Local Optimization
Towards Multi-Dimensional Gray Codes

Shumeet Baluja
Google Research

Google, Inc.
Mountain View, CA. USA

Michele Covell
Google Research

Google, Inc.
Mountain View, CA. USA

Abstract— In the context of stochastic search, once regions of
high performance are found, having the property that small
changes in the candidate solution correspond to searching nearby
neighborhoods provides the ability to perform effective local
optimization. To achieve this, Gray Codes are often employed
for encoding ordinal points or discretized real numbers. In this
paper, we present a method to label similar and/or close points
within arbitrary graphs with small Hamming distances. The
resultant point labels can be viewed as an approximate high-
dimensional variant of Gray Codes. The labeling procedure is
useful for any task in which the solution requires the search
algorithm to select a small subset of items out of many. A large
number of empirical results using these encodings with a
combination of genetic algorithms and hill-climbing are
presented.

Keywords—Gray Code; Graph Labeling; Local Search; Genetic
Algorithms; Stochastic Search

I. INTRODUCTION
Many optimization problems include the task of picking a

small subset of items out of many – for example, picking a set
of nodes from a graph that form a vertex cover or selecting a
set of physical items that meet a set of constraints (such as
total size) while maximizing another objective (such as value).
Generate-test-and-revise approaches such as evolutionary
algorithms, genetic algorithms (GA), simulated annealing and
hill-climbing type heuristics are often used to address these
problems. Though a variety of encodings can be used to
represent candidate solutions, one of the most common is a
fixed-length binary string.

In typical select-p-of-N points tasks, the simplest solution is
to assign a random, and unique, binary string (of length
log!𝑁) to each of the N points. The search algorithm then

encodes the full solution in a binary string of length
𝑝 ∗ log!𝑁 . Each substring is mapped to a point to be
selected (in graph problems, each point may encode a vertex;
in knapsack problems, each point may encode a physical item,
etc.). Typical search algorithms progress by repeatedly
stochastically modifying the candidate solutions and testing
the result. A severe drawback of randomly assigning labels to
vertices/items is that a small change in a single bit may
radically change the solution. A single bit flip may change the
resultant substring to encode a point/item that is unrelated to
the point prior to the flip. Conversely, another problem is that

making small moves (to nearby vertices or to similar objects)
may require a large number of changes to the candidate
solution string, thereby making it difficult to search local
neighborhoods once a region of high performance is found.

The two primary objectives of this paper are to (1) present
a method for deriving neighborhood preserving binary labels
to effectively represent “close” points and (2) to demonstrate
how it can be effectively used within genetic algorithms [25].
By preserving neighborhoods, making local moves in the
search space is possible. A wide class of problems, including
selecting nodes in graphs (Fig. 1), are amenable to these
labeling techniques.

In this past, neighborhood-preserving codes have largely
been explored in the context of optimization of an objective
function in which the parameters are discretized encodings of
real numbers [1]. For optimization, a standard binary
representation of numbers can be problematic – consider
representing 127 in binary: 01111111 and 128 in binary:
10000000; though 127 & 128 follow each other, their
Hamming distance is 8. For a search algorithm to move from
one value to the next, the number of modifications required to
the bit-string is large. These ‘Hamming cliffs’ are commonly
addressed through encoding the parameters with Gray Codes
[2][3]. With Gray Codes, consecutive items have a Hamming
distance of 1. 127 & 128 are represented as 01000000 &
11000000 – a single bit flip moves to nearby values. This is

Fig 1. 16 vertex graph with 15 edges. Left: nodes labeled randomly,
summed Hamming distance between connected nodes is 40. Right:
better node labeling, summed Hamming distance is 18.
Edges with hamming distance > 1 are marked with thick red lines.

1111"

0000"

0001"

0010"

0011"

0100"

0101"

0110" 0111"

1000"

1001"

1010"

1011"

1100"

1101"

1110"

1111"

0000"

1101"

0010"

0011"

0100"

0101"

0110"

0111"

1000"

1001"

0001"

1011"

1100"

1010"

1110"

particularly important in the latter stages of search when
search has landed in a basin of high performance [4][5] and
local optimizations are required for improvement.

Gray code has been extensively studied in the evolutionary
algorithm literature over several decades [6][7][8][9][10]. The
neighborhood-preserving encodings presented in this paper
have applicability beyond ordinal number representation. For
example, within a graph, if the binary labels are assigned to
nodes randomly, Hamming cliffs along the edges may be
prevalent, Fig 1 (left). In Section II, we present our algorithm
to remove the Hamming cliffs in arbitrary graphs, Fig. 1
(right). The derived encodings share an important property
with Gray-code: small changes in the candidate solution allow
search to explore local neighborhoods. Although the label
assignment procedure does not guarantee single-bit Hamming
distances between close items, it significantly lowers the
Hamming distances found by random assignment.

Numerous applications exist which could benefit from this
label assignment, including selecting prototype samples for
machine learning [11], point selection for object localization
[12], and a multitude of classic NP hard problems [13][14]. In
Section III, we demonstrate how the neighborhood preserving
codes are used within a GA to address a number of such tasks.

II. GRAPH PROPAGATION FOR POINT LABELING
The basis of our approach to finding neighborhood preserving
codes is to “propagate” vertex labels along the edges of a
graph. For many classes of problems, the underlying graph
will be obvious; in others, a graph will need to be inferred.
Examples of both types of problems will be given in the next
section. For simplicity, in this section, we are given an
unlabeled graph that is either sparsely or densely connected
and may contain either weighted or unweighted connections.
The goal is to label vertices with unique binary labels of
length 𝑇 = log! 𝑛 with minimal Hamming distances for
connected vertices.

The algorithm is initialized by randomly assigning unique
labels of length T to each of the vertices. Over a number of
iterations, the algorithm will iteratively improve the labels to
reduce the Hamming distance between connected vertices. In
each iteration, each vertex’s label is propagated to each of its
neighbors. Each vertex accumulates the labels from all of its
neighbors, combines the accumulation with its own label, and
propagates the accumulated tally to its neighbors in the next
step after a normalization step. See Fig 2.

Over successive iterations, each vertex’s label will ‘reach’
all of the nodes in the graph. To ensure that a vertex’s
influence is more pronounced upon close neighbors, the edge
weights are scaled to a positive weight < 1.0. This serves as
an exponential decay over connection hops for the influence
of a vertex on its neighbors (in all the experiments, the max
weight was 0.9). This algorithm is a variant of the Adsorption
label propagation approach [15], in which YouTube videos
were propagated along the inferred co-view graph to find

novel video recommendations. In [21], we first explored its
use in optimization.

Once the propagation has sufficiently converged, each
vertex will have a summary of the labels from all of its
neighbors in the form a single vector specifying the
distribution of 0’s and 1’s in each bit position for itself and its
neighbors. With these summary statistics, new labels are
assigned to each node to replace the initially random labels.
The new labels are chosen to minimize the summed distance
between the summary statistics in each node and the new
node’s label. Once the new labels are chosen, the full
algorithm is repeated. This continues for a set number of
iterations or until the labels no longer change in this
reassignment step. At the end of this procedure, each node
will have a label similar to its neighbor’s label.

Originally, Adsorption was designed for classification tasks
that may have sparse data, but in which an underlying
“relatedness” graph exists [15][16]. The variant described
here, with a vector of binary, unique, labels, was a
modification of Adsorption created to provide ‘forgiving’ hash
labels to clustering tasks – in which the goal is to associate
nearby clusters (i.e., vector quantization) with minimal
distance bit-strings. Adsorption, and this variant, lend
themselves to simple iterative computation (similar to
PageRank [17]) and are efficient to implement in the
MapReduce framework [18].

A. Propagation Variations & Practical Heuristics
The label reassignment step can be expensive (described

below). Because the propagation and accumulation steps

Initialize:
Randomly label each vertex with unique bit-string
length T.

Propagation Step:
 For each node, n:
 For each node connected to n, m:
 At Node m – record n’s label.

Accumulation Step:
 For each node, n:
 For each bit position 1-T, t:

Initialize Evidence bit positions to labeln[t]
with weight α

 For each recorded labels at node-n, R:
 Evidencen [t] = Evidencen [t] + R[t] .

Scale Evidence vector to 1.0 max (by normalizing
by weight of incoming connections and α)

Label Reassignment Step:
 Set P = all possible labels of length T (|P| = 2T)
 For each node, n:
 For each label in P, p:
 Calculate Distance Evidencen, p

Reassign all labels, (one label per vertex) minimizing
the overall distance between Evidence and assignment
across all nodes.

Repeat from Propagation Step

Fig 2. Graph Propagation for Label Assignment, α set to 0.1. Shown for
a uniformly weighted graph. A straightforward extension is

possible for non-uniform edge weights [21].

work incrementally, it is not necessary to run the reassignment
step after each iteration. Instead, the propagation and
accumulation can be repeated without invoking label
reassignment until either (a) the graph converges or (b) a set
number of iterations is reached. This dramatically reduces the
computational expense.

A variety of matching procedures can be used for the
reassignment step. A simple greedy method will not
guarantee an optimal assignment. A procedure popularized in
1957, termed the “Hungarian Method” or the “Munkres-
Assignment Algorithm,” provides a method for finding the
optimal assignment [19][20]. Given an NxN matrix in which
the element in the i-th row and the j-column represents the
non-negative cost of assigning label i to point j, the Hungarian
Method finds the minimal cost assignment. It is often used to
assign jobs to workers with minimum cost. Although beyond
the scope of this paper to provide details (see [19][20]), the
Hungarian Method can be implemented in O(N3).

Another heuristic that has repeatedly shown to improve the
final performance in terms of reducing the summed Hamming
distance across edges is to modify the distance calculation
measurement employed in the reassignment step. Recall that
the distance to be minimized is the summed distance across all
nodes N between Evidencen and all binary labels of size T. A
simple heuristic to promote smoothness across connecting
vertices is to weight the Evidence at each node with the
Evidence from all the neighboring connections (note that this
differs from simply a propagation step in that the node’s
assigned label does not contribute directly in this step, only
the Evidence accumulated at the node and its neighbors). In
this case, Evidencen is based on Evidenceneighbors-of-n (in
Adsorption parlance, this is equivalent to a step in which a
node’s self-“injection” labels are not used). This yields
dramatic improvements in the result of the labeling procedure.

Fig 3. shows the results for 100 randomly initialized runs
for (A) a 256-node “line-graph” where the nodes are arranged
in a line and each node is connected to each of its two
neighbors (B) a sparsely connected random graph of 256
nodes. The results shown are the summed Hamming distance
between connected nodes. For reference, a random labeling
of graph-A (510 connections) had a summed Hamming
distance of 2049 (close to expected: 510*(8/2)), a randomly
labeled graph-B (768 connections): 3076 (~768 * (8/2)).

From Fig. 3, it is first apparent that there is no guarantee of
optimal assignments (i.e. where all connected nodes have a
Hamming distance of 1), since different runs end with
different summed Hamming distances. Second, the line-graph
was chosen because using a standard Gray-code to label
sequential nodes would yield a known optimal assignment.
Had a standard Gray-code been found, the summed Hamming
distance would be 510. Note that the average summed
Hamming distance found was not optimal: 771 for the
Hungarian Matching, but it was far better than random (2049).
Third, the multi-node distance heuristic worked with both

graphs, the results were statistically significant (p<0.001). All
further experiments will employ this distance calculation.

To provide insight into the algorithm progress, we examine
four sample runs for a graph with 8192 nodes (Fig. 4). In each
run, the graph connectivity was varied: 24,576 edges (3 per
node), 32,768 (4 per node) 40,960 (5 per node) and 81,920 (10
per node) respectively. Each graph was constructed so that an
optimal assignment existed. Up to 100 label reassignment
steps are shown in Fig. 4. The Y-axis of the graph is the ratio
of the summed Hamming distance across all edges in the
graph / the Hamming distance of the optimal assignment
(=number of edges). With connectivity of 10 and 5, the
algorithm reaches a ratio of 1.0 (optimal assignment). With
C=4 the ratio is 1.07 with Connectivity 3, the ratio is 2.7. In
this example, the more constraints provided in the graph, the
more rapid the convergence and the better the solution found.
The least connected graph neither converged as rapidly nor
performed as well as when more edges were provided.

III. NEIGHBORHOOD PRESERVING ENCODINGS FOR SEARCH
To this point, we have presented methods to reduce the

summed Hamming distance between connected nodes in a
graph. The goal of this section is to demonstrate that the
neighborhood preserving point labeling schemes are general
and the resultant codes can be easily and effectively used
within a standard Genetic Algorithms (GA).

In a recent previous study [21], we demonstrated the use of
neighborhood preserving encodings in the context of simple
bit-flip stochastic hill-climbing (also see [26]). One of the
most salient findings of that study was that the encodings
performed best in the latter stages of search – during local
optimization. However, during the early stages of search,
when diverse exploration was necessary, the use of the
encodings actually hindered performance. The reason was

 256 Node Line Graph
(510 Connections)

 256 Node Random Graph
(768 Connections)

Hungarian
Matching

avg=771 avg=1788

Hungarian

Matching &
Multi-Node

Distance

avg=721 avg=1587

Fig 3. The summed hamming distance across connected nodes of two
graphs (1) line-graph, left and (2) random graph, right. Distribution of
results across 100 trials using just Hungarian and Hungarian with modified
node distance. Distributions closer to the left are better (lower summed
Hamming distance) (x-axis is constant for each graph type). Average
score over 100 trials also given.

the nature of the hillclimber tested – it operated with single
bit-flips. With single bit flips, the probability of large moves
is, by design, reduced using these encodings. If these
encodings were used only in the later portions of search, once
a basin of good performance was found and small moves were
required for local optimization, these reduced Hamming
distance encodings far outperformed random encodings. This
finding led to a simple heuristic: use random encodings for the
initial portion of search, and switch to reduced-Hamming
distance encodings once progress slowed [21].

Analogously, in a number of previously published studies,
it was found that GAs very quickly find regions of high
performance, but incorporating hill-climbing (HC) methods
often yields better results than simply continuing the GA for
more iterations [13][22][23][24][27]. Though numerous
methods for incorporating HC into GAs have been explored,
the simplest is in two consecutive stages: Stage-1: run a
simple, generational, GA to find a region of high performance.
Stage-2: starting with the best result found by the GA, use HC
for local optimization. This approach will be used here.

The Stage-1 generational GA was run with the following
parameters: Population Size: 50, Crossover Type: Two Point
(performed equivalently to uniform), Mutation Rate: 1%-10%
(multiple were tried) and Elitist Selection (the best solution
from one generation is passed to the next unperturbed). The
GA is run until a local optima is found (1000 consecutive
evaluations without improvement). The GA’s best solution
initializes the stochastic next-ascent hill-climbing (HC) step.

The Stage-2 HC algorithm begins with the GA’s best
solution string. It randomly perturbs a bit in the solution
string, evaluates the new string, keeps the perturbation if the
evaluation has improved or stayed the same, and discards the
perturbation if the evaluation has worsened with the
perturbation. Like the GA, HC is continued until 1,000

consecutive evaluations without improvement. The best result
found from the HC step is returned as the final answer.

Our primary goal is to determine, in a combined scheme of
GA+HC, whether there is a need for using the neighborhood
preserving mappings or whether this encoding’s benefit is
mitigated when two search algorithms with complementary
strengths (global and local optimization) are combined. 1
Additionally, we examine whether the Hungarian-based
labeling is useful with a GA itself. We examine four variants:

1. GA(R1)+HC(R1): The bitstring to vertex mapping for

the GA is chosen randomly. The same mapping is then
used with the hill-climbing algorithm. This is the
baseline.

2. GA(R1)+HC(R2): The bitstring to vertex mapping for
the GA is chosen randomly. A newly chosen, but still
random, mapping is used with the hill-climbing
algorithm. This variant determines whether simply using
a new encoding for the hill-climbing stage provides the
same benefit as the neighborhood-preserving mappings.

3. GA(R1)+HC(Hungarian): The bitstring to vertex
mapping for the GA is chosen randomly. However, the
hill-climbing mapping is chosen through the Hungarian
variant of the graph propagation algorithm. This test is
included to determine whether a reduced hamming
distance encoding is more important for local
optimization (Stage 2) than for the initial stages of search.

4. GA(Hungarian) + HC (Hungarian): The Hungarian
mapping is used for both the GA and HC.

In addition to the results presented here, we completed two

sets of experiments not shown due to space restrictions. First,
we experimented with a GA without an HC step – using both
random and Hungarian encodings. The results without an HC
step faired consistently worse than those where an HC step
was employed. Second, we experimented with greedy
matching (a non-optimal reassignment step shown in Fig 2.)
instead of Hungarian matching. In most cases, there was little
difference between Hungarian and greedy matching. In the
majority of runs where there was a significant (p<0.001)
difference, the Hungarian matching performed better. This is
similar to the results found when using only HC [21].

We begin our empirical examination with the Long-
Shortest Path problem. Given a sparsely connected graph of N
vertices, the goal is to select K points that have the longest

1 In this paper, the HC and GA algorithms operate on binary strings.

Nonetheless, it is possible to construct variants with operators that move
directly in graph space without an intermediate encoding. Numerous
studies (see references) have been conducted examining the efficacy of
binary encodings, particularly in the context of GAs; we will not enter
that debate here. Rather, if the problem to be addressed is of the select-p-
of-N points variety, our goal is to improve the performance of any
algorithm that employs a binary encoding for exploring the search space.

C=4

C=3

C=10

C=5

Fig 4. Sample runs with 8192 node graphs. 4 Levels of connectivity
are explored. Shown is the Ratio of hamming distances to minimum
possible Hamming distance over the first 100 label reassignments. All
runs start with ratio of ~6.5 (this is expected as the assignments are
random and the label length is 13 (213=8192)). With Connectivity=10
and Connectivity=5, the ratio is driven to 1.0 (optimal assignment).
With C=4, ratio is 1.07, with Connectivity=3, ratio is 2.7.

of Reassignment (max 100 shown)

Ratio of H
am

m
ing D

istance of all edges to
O

ptim
al.

shortest-paths between the points in K. We would like to
maximize the sum of (K*K) distances. For the experiments,
graphs are randomly generated with N=1024 nodes with
varying levels of connectivity, with the task of selecting K=20
nodes with the furthest distance from each other. The solution
string is represented with 200 bits (20*10); each contiguous
substring of 10 bits represents a selected vertex.

Before introducing the Stage 2-HC, we first examine the
performance of the GA with random vs. Hungarian-
assignments of labels. With 480 trials tested with 1024-node
graphs created with random 10-node connectivity, 215 trials
were better with random labels, 265 with Hungarian, and there
was no statistical difference in the quality of the best results
found. With graphs that were created with varying numbers
of clumps of clustered connectivity (instead of uniformly
random connectivity), of the 480 trials, 225 were better with
random labels, 255 with Hungarian, again with no statistical
difference in the best results found. For this problem, when a
GA is used in isolation, we did not see much difference in
performance between using random encodings and
neighborhood preserving encodings.

Why is there so little difference in performance? Unlike
HC, which explores the search space through single bit flips,
the crossover and mutation operators can be disruptive to the
candidate solutions. Therefore, the intelligent labeling does
not have the same detrimental impact of reducing exploration
in the early stages of search as it did with single-bit-flip-HC,
as reported in [21]. However, this only explains why the
results with Hungarian labeling were not worse. Why were the
results not better using Hungarian labeling? While GAs excel
at rapidly finding regions of high performance, they are often
less effective in the latter stages of search, which require
smaller moves for local optimizations [7][8]. One reason for
this is that the finite population of points from which the GA
searches may converge too quickly (rendering crossover
ineffective), thereby making mutation the primary search
operator. However, mutation in a population of points is
inefficient as compared with other, simpler, methods. As will
be demonstrated in the next few sections, when a Stage 2,
local-optimization hill-climbing step is introduced, the
outcomes with neighborhood preserving mappings
overwhelmingly outperform other encodings.

A. Test Problem 1: Long-shortest Paths
Throughout the experimental sections, a large number of

empirical results will be presented. Because the problems are
randomly generated, giving the raw evaluation numbers yields
little insight. Instead, we present comparative results. For
each comparison, we give the number of times algorithm A
performed better than algorithm B and vice-versa. Ties are
not attributed to either algorithm. We also tell whether the
average performance, in terms of best evaluation found, was
statistically different from each other (> 99% confidence using
a paired two-tail t-test).

In Table 1 and Table 2, we compare the performances of 4
GA+HC variants as the size of the graphs (N) and the number
points to be selected (K) are varied. Row 1,
(GA(R1)+HC(R2) Vs. GA(R1)+HC(R1), tests whether the
fact that the vertex encoding between the two stages changes
improved performance by itself – note that the vertex
encoding was switched to another randomly selected encoding
(R2) with no neighborhood preservation properties. Previous
experiments with a single search algorithm [9][21] showed
that simply changing the representation to another, even
random, representation helped escape local optima. Here,
however, we witness a less consistent improvement. Likely,
because changing the search algorithm (from GA to HC)
changed the primary search operator, that served the same role
for escaping local optima as changing the encoding. The
encoding change had only a secondary effect.

Next, we test whether adding neighborhood preserving
properties to the encoding can improve the results. The
effects of using the Hungarian encoding with Stage 2-HC are
shown in Row 2. The GA still uses the random encoding for
these tests. The majority of the cases improved significantly
over using a random encoding with HC. Row 3 shows that
this improvement remains even if the same Hungarian coding
was used in both the Stage-1 GA and Stage-2 HC. This
indicates that the change in encoding was not the driver of the
improved performance, it was the encoding itself.

Finally, we compare the results of using the neighborhood
preserving codes throughout the entire search, and only in
Stage-2. Row 4 of both tables shows no statistical difference
between using a random or Hungarian encoding for the GA
stage when the Hungarian encoding is used in Stage 2 for
local optimization. This corroborates the findings in [21] – the
effects of neighborhood preserving codes are most
pronounced in local optimization.

Table 1. Longest Shortest-Paths, N=256,512,1024 Vertices.
C=Connectivity 3. K = 20. Random Graph

 N=256 N=512 N=1024
1 GA(R1)+HC(R2) Vs.

GA(R1)+HC(R1) 51/68 No 59/61 No 73/47 No

2 GA(R1)+HC(Hung) Vs.
GA(R1)+HC(R2) 77/42 Yes 79/40 Yes 78/42 Yes

3 GA(Hung)+HC(Hung) Vs.
GA(R1)+HC(R2) 81/35 Yes 70/50 Yes 78/41 Yes

4 GA(Hung)+HC(Hung) Vs.
GA(R1)+HC(Hung) 66/54 No 52/66 No 65/53 No

Table 2. Longest Shortest-Paths, N=1024 Vertices. C=3. Random Graph

 K=5 K=10 K=20 K=100
1 GA(R1)+HC(R2) Vs.

GA(R1)+HC(R1) 44/52 No 69/49 No 73/47 No 90/30
Yes

2 GA(R1)+HC(Hung) Vs.
GA(R1)+HC(R2) 76/30 Yes 76/40 Yes 78/42

Yes
79/41
Yes

3 GA(Hung)+HC(Hung) Vs.
GA(R1)+HC(R2) 77/36 Yes 76/43 Yes 78/41

Yes
62/58
No

4 GA(Hung)+HC(Hung) Vs.
GA(R1)+HC(Hung) 58/48 No 65/52 No 65/53 No 61/59

No

 We next experiment with increasing the graph’s connectivity
(Table 3). This is important to determine whether using the
label propagation techniques can be applied to highly
overconstrained problems. From Table 3, we again see that
introducing a second, random, mapping rarely improves
performance (Row 1). Importantly, using the Hungarian-
derived-mapping usually outperforms just using random
mappings (Rows 2 & 3). The results shown in Row 4 are
similar to those seen earlier; in Stage 1-GA, the encoding was
less important than the encoding used for the HC; the results
in Row 4 are not statistically different.

Table 3. Longest Shortest-Paths, N=1024. C= 10. Random Graphs.

 K=5 K=10 K=20 K=100
1 GA(R1)+HC(R2) Vs.

GA(R1)+HC(R1) 16/8 No 26/38 No 54/50
No

58/62
No

2 GA(R1)+HC(Hung) Vs.
GA(R1)+HC(R2) 36/16 Yes 98/2 Yes 68/34

Yes
66/54
No

3 GA(Hung)+HC(Hung) Vs.
GA(R1)+HC(R2) 50/28 Yes 86/20 Yes 78/34

Yes
58/62
No

4 GA(Hung)+HC(Hung) Vs.
GA(R1)+HC(Hung) 38/34 No 26/32 No 56/44

No
54/62
No

For the remainder of the experiments, we omit presenting

the results for changing between two random encodings:
GA(R1)+HC(R2) vs. GA(R1)+HC(R1); most cases were not
significantly different, and those that were, favored using a
different random encoding for the GA and HC steps.
Therefore, all future comparisons will be made to the better of
the two, GA(R1)+HC(R2). We retain the harder of the two
baselines to compare with the neighborhood preserving codes.

The comparisons that remain are those that focus on the
effects of using the Hungarian encoding for HC (Row 2), and
using the Hungarian encoding for both (Row 3). These two
columns provide the evidence to determine whether the
neighborhood preserving codes for local optimization
outperform random encodings. For completeness, Row 4 is
kept, though there is rarely any significant difference in
performance in the random vs. Hungarian encodings used for
Stage 1-GA as long Stage 2-HC uses the Hungarian encoding.

B. Test Problem #2: Shortest Distance to Selected Vertices
In this problem, the goal is to select K vertices from an N

node graph such that the summed distance of all the vertices in
N to a member of K is minimized. If the graph is planar, this
is a grossly-simplified problem of cell-phone tower layout.
Like the previous problem, this problem is parameterized with
K,N, and C (the connectivity of the graph).

In Table 4, experiments are conducted varying the number
of nodes in the graph; we always see a large improvement in
using the Hungarian-derived mappings over random labels.

The results in Table 5 indicate that even as the number of
points to be selected increases, the same performance trends
hold across random and cluster graphs. Local optimization
consistently benefits from neighborhood preserving mappings

– regardless of whether the Hungarian mappings are used for
the GA portion. As before, when the neighborhood preserving
codes are used for Stage-2 HC, there is little performance
difference in the encoding used for the GA (Row 3, both
tables).

Table 4. Effects of Graph Size. N=256,512,1024 Vertices. C=Connectivity
3. K = 20. Random Graphs.

 N=256 N=512 N=1024
1 GA(R1)+HC(Hung) Vs.

GA(R1)+HC(R2)
105/10 Yes 110/8 Yes 92/23 Yes

2 GA(Hung)+HC(Hung) Vs.
GA(R1)+HC (R2)

105/11 Yes 111/8 Yes 85/34 Yes

3 GA(Hung)+HC(Hung) Vs.
GA(R1)+HC(Hung)

56/59 No 58/60 No 62/56 No

Table 5. Effects of varying K. N=1024 Vertices. Cluster Graph, Random
Graph. All connectivities.

 K = 5 K = 10 K = 20 K = 100
1 GA(R1)+HC(Hung) Vs.

GA(R1)+HC(R2)
429/85
Yes

492/102
Yes

497/97
Yes

424/161
No

2 GA(Hung)+HC(Hung) Vs
GA(R1)+HC (R2)

404/124
Yes

463/134
Yes

477/118
Yes

421/166
Yes

3 GA(Hung)+HC(Hung) Vs.
GA(R1)+HC(Hung)

238/240
No

293/300
No

307/287
No

309/265
No

C. Test Problem #3 – Multi-Dimensional Knapsack
In this problem, there are N objects with D traits (weight,

volume, etc.) and an associated Value (such as $). The object
is to find the set of objects that can fit into a knapsack with
maximal value, subject to the constraint that the summed
value of any of the traits not exceed the knapsack’s capacity
for that trait. The problems are generated randomly; each of
the D-traits and the value are drawn uniformly from 1-1000.

Unlike the two graph problems explored in the previous
sections, there is no explicit graph to propagate the labels from
which to create the neighborhood-preserving mappings.
Instead, we must first synthesize an appropriate graph. We
represent each object as a node in the graph. To determine
which objects are connected to each other (the edges in the
graph), we concatenate each object’s traits and value into a
single vector and connect the object to the S other most similar
objects, as measured by the l2-norm difference between the
object’s vectors. In these experiments, it should be noted that
the edges are not necessarily symmetric. In the completed
graph, each node is connected to at least S other nodes. With
this, we can proceed with the same propagation mechanisms
used in previous experiments – with the labels derived from
propagation in this graph. The solution string was encoded as
a bit-string of selected items. If items were represented more
than once in the bit-string, they were still added only once.
Items were added until the knapsack exceeded its volume in

any dimension; then the total value of the items in the
knapsack was returned as the value of the bit-string.

In Table 6 and Table 7, we examine the effects of
increasing the problem difficulty. Three sizes of the
knapsack are explored: ranging from 1/5th of the expected total
in any dimension to 1/20th of the expected total in any
dimension – i.e. if there are 256 nodes, the total in any
dimension is expected to be 256*(1000/2)=128,000, therefore
for the hardest case of 1/20th the expected total, the knapsack
is limited to a total 6,400 in any dimension. In Table 6, each
item is has D=9 traits, in Table 7, D=1 trait. The larger the
number of traits, the more unlikely it is to find high value
items that are small across all traits. We expect a more
uniform performance across algorithms as D increases.

Table 6. Multi-Dimensional Knapsack. N=1024, 512, & 256 Vertices.
Graph modeled 10 Nearest Neighbors, D = 9 Traits

 Loose
Constraint
1/5th total

Medium
Constraint
1/10th

Tight
Constraint
1/20th

1 GA(R1)+HC(Hung) Vs.
GA(R1)+HC(R2)

234/126
Yes

267/93
Yes

266/94
Yes

2 GA(Hung)+HC(Hung) Vs
GA(R1)+HC (R2)

238/122
Yes

268/92
Yes

267/93
Yes

3 GA(Hung)+HC(Hung) Vs.
GA(R1)+HC(Hung)

178/182
No

177/182
No

183/177
No

Table 7. Multi-Dimensional Knapsack. 1024, 512, & 256 Vertices. Graph
modeled 10 Nearest Neighbors, D = 1 Trait

 Loose
Constraint
1/5th total

Medium
Constraint
1/10th

Tight
Constraint
1/20th

1 GA(R1)+HC(Hung) Vs.
GA(R1)+HC(R2)

331/29
Yes

196/164
No

239/121
Yes

2 GA(Hung)+HC(Hung) Vs
GA(R1)+HC (R2)

340/20
Yes

210/150
Yes

236/124
Yes

3 GA(Hung)+HC(Hung) Vs.
GA(R1)+HC(Hung)

199/161
No

210/150
Yes

187/173
No

As in the previous problems, the introduction of the

Hungarian encoding in the HC portion of the optimization
provided significant benefits in every case in terms of wins.
The Hungarian encoding was beneficial in almost every case
in terms of average results found, too – in all cases for (D=9)
– Table 6, and in all but one case in the problem sets shown in
Table 7. As before, as seen in Row 3, for the GA, using the
Hungarian assignments vs. Random did not have a significant
impact on performance in the majority of the cases as long as
the Hungarian Encoding was used for Stage 2-HC.

D. Test Problem #4: Multi-Dimensional Partitioning
In this problem, the goal is to divide a set of numbers G

into two subsets G1 and G2 such that the sum of G1 is as close
to the sum of G2 as possible. We add a twist to the problem
by having a set of vectors (of length D) in G instead of

numbers. The goal is to divide G into G1 and G2 where the l1-
norm difference between the sums of vectors G1 and G2 is
minimized. Similar to the knapsack problem explored in
Section 3.4, there is no explicit graph given. Instead, we
construct the graph like the knapsack synthetic graphs – by
finding the most similar, S=10, vectors. The results for the
GA+HC combinations are shown in Table 8 and Table 9.

For both cases, with 10 Dimensions (Table 8) and 2
Dimensions (Table 9), the results always favor using the
Hungarian-labeling for HC. As we have seen in many
problems, the difference between using the Hungarian labeling
for the GA and not was not significantly better as long as the
the Stage-2 HC also used the Hungarian labeling.

Table 8. Results – Partitioning with GA+HC. D= 10 Dimensions. S = 10
(10 similar vertices are connected to each vertex)

 N=256 N=512 N=1024
1 GA(R1)+HC(Hung) Vs.

GA(R1)+HC(R2)
95/25 Yes 87/33 Yes 101/19 Yes

2 GA(Hung)+HC(Hung) Vs
GA(R1)+HC (R2)

90/30 Yes 90/30 Yes 99/21 Yes

3 GA(Hung)+HC(Hung) Vs.
GA(R1)+HC(Hung)

56/62 No 63/56 No 65/55 No

Table 9. Results – Partitioning with GA+HC. D=2 Dimensions. S=10 (10
similar vertices are connected to each vertex)

 N=256 N=512 N=1024
1 GA(R1)+HC(Hung) Vs.

GA(R1)+HC(R2)
110/9 Yes 114/6 Yes 118/2 Yes

2 GA(Hung)+HC(Hung) Vs
GA(R1)+HC (R2)

117/3 Yes 116/3 Yes 119/1 Yes

3 GA(Hung)+HC(Hung) Vs.
GA(R1)+HC(Hung)

54/38 No 60/51 No 52/57 No

Recall that for this problem (and the knapsack problem

explored in the previous section), we had to synthesize a graph
on which to propagate the labels. We modeled the S=10 most
similar vectors for the connections between the vertices. For a
final experiment, we see how sensitive the results are to this
parameter. If there are too few connections in the graph, we
expect there to be less information to exploit in labeling and
therefore a reduction in improvement seen. (Conversely, too
many constrains and the propagation may degrade due to a
muddied signal, fewer relevant vs. irrelevant connections, etc.)
We reduce the number of similar vectors that are modeled in
the graph by 80%, to S=2. We repeat the experiments from
Table 8, setting D=10. The results are shown in Table 10.

Like the results shown with representing S=10 similar
vectors in the graph, the same trends hold with the Hungarian
labeling as before, it provides a benefit in almost every case,
though not as strongly in these tests. The percentage of wins
of the Hungarian over random labeling reduces in many cases.
This is what we expected; by severely reducing the number of
modeled connections, we have removed a significant amount

of information implicitly provided to the algorithm through
the labeling. This also reaffirms an underlying assumption of
this study – the graph from which the point labels are derived
contains problem specific information that can be effectively
used in the search algorithms through the neighborhood
preserving encodings. The more/cleaner the information in
the graph, the more beneficial it will be.

Table 10. Results – Partitioning with GA+HC. D= 10 Dimensions. S=2. (2
similar vertices are connected to each vertex)

 N=256 N=512 N=1024
1 GA(R1)+HC(Hung) Vs.

GA(R1)+HC(R2)
54/26 Yes 41/39 No 51/29 Yes

2 GA(Hung)+HC(Hung) Vs
GA(R1)+HC (R2)

62/18 Yes 52/28 Yes 52/28 Yes

3 GA(Hung)+HC(Hung) Vs.
GA(R1)+HC(Hung)

48/32 No 42/38 No 38/42 No

IV. CONCLUSIONS & FUTURE WORK
There are two major contributions of this paper. The first

is a technique to encode binary-string labels on nodes in
arbitrarily dense graphs that reduces the labels’ Hamming
distance between connected nodes. This technique is based
on graph propagation of labels commonly found in machine
learning literature [15][16].

The second contribution is a large empirical demonstration
of the effectiveness of these labels within stochastic search
algorithms for exploring local neighborhoods once regions of
high performance are found. Additionally, when employing a
GA for the early stages of search, there was no significant
difference in using these vs. random encodings, as long as the
neighborhood encodings were used for Stage-2 local
optimization. This contrasts earlier studies [21], which
showed that when HC with single-bit-flips was used for Stage-
1 exploration, the neighborhood encodings were too
restrictive. GAs did not suffer from this drawback. In
summary, through an extensive empirical comparison
encompassing both problems that had explicit graphs and
those for which the graph had to be constructed, the results
pointed to the efficacy of using the reduced-Hamming
distance labels for local optimization.

Looking forward, there are three directions for research.
First, the solutions to the problems presented in this paper
were encoded as binary-strings. However, there is no inherent
limitation of the propagation algorithm to a binary alphabet.
Higher cardinality alphabets can be accommodated and have
already been explored outside the optimization domain [15].

Second, we have noted that in graphs where label
assignments exist such that connected nodes can have a
Hamming distance of 1, the more connections that are present
in the graph, the more likely it is that the labeling algorithm
approaches the optimal solution (Fig 4), especially when the
heuristic of modifying the distance calculation, as described in
Section II.A, is employed. This warrants further study to
understand the ideal conditions for this labeling procedure.

Third, the propagation algorithm works equally well with
directed and undirected graphs and with non-uniformly
weighted edges. These extensions were not comprehensively
explored in this paper. Nonetheless, many problems in which
a graph is inferred based on similarity of points (such as the
Knapsack and Partitioning problems) are particularly well
suited to these variants. This is left for future study.

REFERENCES
[1] De Jong, K. A. (1975). Analysis of the behavior of a class of genetic

adaptive systems.
[2] Gray, F. (1953). U.S. Patent No. 2,632,058. Washington, DC: U.S.P.T.O.
[3] Savage, C. (1997). A survey of combinatorial Gray codes. SIAM

Review, 39(4), 605-629.
[4] Renders, J. M., & Flasse, S. P. (1996). Hybrid methods using genetic

algorithms for global optimization. IEEE-SMC-B 26(2), 243-258.
[5] Lourenço, H., Martin, O., & Stützle, T. (2003). Iterated local

search. Handbook of metaheuristics, 320-353.
[6] Caruana, R. A. & Scharffer, J.D. (1988). Representation and hidden

bias: Gray vs. binary coding for genetic algorithms. In ICML-5.
[7] Harada, K, Ikeda, K., Kobayashi, S., 2006. Hybridization of genetic

algorithm and local search in multiobjective function optimization:
recommendation of GA then LS. Proc. of the 8th GECCO, 667-674

[8] Reeves, C. (1994) Genetic Algorithms and Neighbourhood Search,
Evolutionary Computing Lecture Notes Volume 865, 1994, pp 115-130

[9] Rowe, J., Whitley, D., Barbulescu, L, Watson, J.P., 2004, Properties of
Gray and Binary Representations, Evo. Computation 12(1): 47-76.

[10] Mathias, K. E., & Whitley, L. D. (1994). Transforming the search space
with gray coding. Proc. IEEE Conf. on Evolutionary Comp. 513-518

[11] Skalak, D. B. (1994). Prototype and feature selection by sampling and
random mutation hill climbing algorithms. In ICML-11 (pp. 293-301).

[12] Baluja, S., & Simon, D. (1998). Evo.-based methods for selecting point
data for object local.: app. to comp.-assisted surgery. App. Int. 8 7-19.

[13] Duvivier, D., Preux, P., & Talbi, E. (1996). Climbing up NP-hard
hills. Parallel Problem Solving from Nature—PPSN IV, 574-583.

[14] De Jong, K. A., & Spears, W. M. (1989). Using genetic algorithms to
solve NP-complete problems. In Proc. ICGA-3 124-132.

[15] Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., &
Aly, M. (2008). Video suggestion and discovery for youtube: taking
random walks through the view graph. 17th WWW 895-904.

[16] Zhu, X., & Ghahramani, Z. (2002). Learning from labeled and unlabeled
data with label propagation. CMU-CALD-02-107.

[17] Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank
citation ranking: bringing order to the web. SIDL-WP-1999-0120.

[18] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data
processing on large clusters. CACM, 51(1), 107-113.

[19] Munkres, J. (1957). Algorithms for the assignment and transportation
problems, J. Soc. for Ind. & Applied Mathematics, 5(1), 32-38.

[20] Kuhn, H. W. (2006). The Hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1‐2), 83-97.

[21] Baluja, S. & Covell, M. (2013) Neighborhood Preserving Codes for
Assigning Point Labels: Applications to Stochastic Search. To Appear
in: 4th Workshop on Comp. Opt., Modelling and Sim. (COMS2013)

[22] Wattenberg, M., & Juels, A. (1996, June). Stochastic hill-climbing as a
baseline method for evaluating genetic algorithms. NIPS-8, p 430.

[23] Chakraborty, U. K., & Janikow, C. Z. (2003). An analysis of Gray versus
binary encoding in genetic search. Informat. Sciences, 156(3), 253-269.

[24] García-Martínez C, Lozano M. (2008) Local search based on genetic
algorithms. Advances in metaheuristics for hard optimization.199–221.

[25] Goldberg, D.E., 1989, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley.

[26] Rothlauf, F., 2003, “On the Locality of Representations,” GECCO-2003
[27] El-Mihoub, T.A., Hopgood, A.A., Nolle, L. Battersby, A., 2006, Hybrid

Genetic Algorithms: A Review. Eng Letters 13, p 124-137.

