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Abstract—Real-time, responsive optimization of traffic flow
serves to address important practical problems: reducing drivers’
wasted time and improving city-wide efficiency, as well as
reducing gas emissions and improving air quality. Much of the
current research in traffic-light optimization relies on extending
the capabilities of basic traffic lights to either communicate with
each other or communicate with vehicles. However, before such
capabilities become ubiquitous, opportunities exist to improve
traffic lights by being more responsive to current traffic situations
within the existing, deployed, infrastructure. In this paper, we
use micro-auctions as the organizing principle with which to
incorporate local induction loop information; no other outside
sources of information are assumed. At every time step in which
a phase change is permitted, each light conducts a decentralized,
weighted, micro-auction to determine which phase to instantiate
next. We test the lights on real-world data collected over a period
of several weeks around the Mountain View, California area.
In our simulations, the auction mechanisms based only on local
sensor data surpass longer-term planning approaches that rely
on widely placed sensors and communications.

I. INTRODUCTION

Traffic congestion is a practical problem resulting in sub-
stantial delays, extra fuel costs, and unnecessary harmful gas
emissions. In urban areas, traffic is largely controlled by traffic
lights; improving their control and responsiveness to existing
travel flows holds immense potential for alleviating congestion
and its associated problems.

Inefficient configuration of traffic lights remains a common
problem in many urban areas. For example, many traffic lights
are based on fixed cycles, which means that they are set to
green and red for fixed amounts of time. Rarely is this an
optimal solution, as the real-time traffic situation is not con-
sidered, and may leave cars waiting in long queues to satisfy
shorter queues or even no queue at all. Nonetheless, even
assuming fixed-length, non-responsive lights, it is possible to
optimize the light timings to handle historic knowledge of
average flows that have been observed. Such approaches are
often handled through the use of genetic algorithms to optimize
the light timings [13], [15], [16], [21]. An alternate approach
to the optimizations offered through genetic algorithms is a
machine-learning approach based on reinforcement learning
that attempts to learn optimal policies for the lights [1], [2],
[24].

The methods referenced above have not only been applied
to fixed-policy lights, but also to lights that use induction-
loop sensors to provide real-time traffic-state information to the
light controllers. Additionally, many researchers have looked
into future possibilities where communication between cars
and lights exists [3], [10], [19]. Such communication allows

for better light control through the possibility of communi-
cating schedules to cars and arrival times to lights. Further,
communication from lights to other lights allow each light to
broadcast its schedule and observed flows; with this additional
information, alternative planning and scheduling schemes can
be created [17], [25], [26].

It should be mentioned that approaches relying on a
centralized controller or hierarchies of controllers have also
been explored in the research literature. However, the more
coordination that is assumed, the greater the difficulty in
scalability and system “nervousness” (where small changes
in the overall system state require large changes at the local
level) [12]. For scalability, we concentrate only on local-
decision making.

In Section IV, we present an approach that only changes
the logic in the traffic-light controllers. It does not hypothesize
the existence of communication between lights nor between
cars and lights. The information that we employ to make
lights reactive is provided solely through local induction-loop
sensors, placed within the framework of an auction system.
When a phase change is permitted, the light controller collects
bids from all the phases and conducts a micro-auction. The
phase bids are set by current readings from local induction-
loop sensors, without remote communication. The magnitude
of the bid is based on the real-time data from the induction
loops. Both positive and negative bids are allowed and will
be described in Section IV. To test the ideas, we collected
real-world data from the Mountain View, California area
over several weeks. The results are promising: in simulations
based on the same empirical data, the micro-auction approach
outperforms long-term planning approaches on a number of
important metrics, including overall capacity.

We begin with a brief section on how to simulate un-
constrained transitions between phases, which is used in the
subsequent sections. In Section III, we describe an alternative,
planning-based traffic controller, derived from [17]. Section IV
details our proposed micro-auction controller. All of the meth-
ods presented here require optimization of many parameters.
The automated optimization procedure (NASH) used for all
of the approaches is described in V. Section VI presents an
overview of the data that was collected — both the routes and
the travel tracks. We present our results in Section VII. The
paper concludes with ideas for future work in Section VIII.

II. UNCONSTRAINED TRANSITIONING BETWEEN TRAFFIC
PHASES

In the context of traffic signal terminology, a phase spec-
ifies which lanes of traffic at an intersection may flow, and



Fig. 1: An example four-phase
traffic light

in which directions. For instance, in Figure 1, traffic can flow
North-South in phase 1 and East-West in phase 3. Traffic lights
typically transition from phase-to-phase in a fixed order, known
as round-robin sequencing, with phases of constant duration in-
terleaved with appropriate interstage (“yellow”) periods. While
predictable, such fixed schemes are sub-optimal since they
lead to significant under-utilization of the intersection when
incoming traffic is unevenly distributed. This has prompted
research on unconstrained sequencing, where the traffic light
can switch to phases out-of-order in order to better service the
observed traffic at the intersection.

We use Sumo [14] for all the simulations reported in this
paper. Sumo (Simulation of Urban MObility) is an open-source
traffic micro-simulation package [7], Sumo uses discrete time
steps (1 msec each) in its simulations but keeps a continuous
representation of location, distance, and speed. We selected
Sumo since this continuous spatial representation makes it
much better for simulations that include congested surface
streets, compared to the discrete-space alternatives [20].

Whenever there is a transition from one traffic-light green
phase to another, where some of the lights that were green
become red, there is the need for an interstage period (that is,
a “yellow phase”) to provide warning to the affected drivers
to stop or to proceed, based on their speed and distance to the
intersection. The sequence of green phases is “round robin”
by default within Sumo. In the case of round-robin transitions,
there is only one yellow phase that will follow any given green
phase (since the sequence of greens is fixed and predefined).
When we have traffic sensor inputs, we can consider allowing
out-of-sequence transitions, based on what traffic is seen at the
intersection’s local induction loops. However, the potential for
improvement in traffic flow requires additional yellow-phase
logic.

In both Sections III and IV, we allow lights to make out-of-
sequence transitions between green phases. This unconstrained
approach makes better use of the intersection capacity, since it
can be more responsive to real-time traffic demands. In addi-
tion, when the traffic-light logic includes advance planning (as
in Section III), there is a second advantage to out-of-sequence
transitions. For planning-based logic, forcing a round-robin
sequencing necessitates much longer planning horizons to
avoid making short-sighted decisions — the light must plan
ahead for the combined duration of all the phases in the cycle.
In contrast, with unconstrained sequences, the light only needs
to plan ahead for the duration of a single yellow phase.

Which signals need to be yellow (that is, which of the
displays need to light up yellow, instead red or green) depends

on the combination of previous and following green phases.
Since we allow out-of-sequence transitions between green
phases, we need to create a grid of the correct yellow phases
to put in the middle of these transitions. During the Sumo-
simulation setup [14], for each pair of green phases, if any
green signal needs to change to a red signal, we create the
intermediate yellow phase by setting those displays in the new
yellow phase as lighting up yellow.

Next, we need to decide the duration of the yellow phase.
We can look at the signals that are marked as yellow and trace
backwards from them to the maximum of the speed limits for
the lanes that those signals control. We then set the yellow
duration for that green pair to be that maximum speed divided
by the DOT-recommended safe deceleration rate of 3 m/s? [22]
plus a reaction time of 1 second.

Finally, we added custom logic to Sumo’s traffic lights [14]
to correctly select the yellow according to the current phase
and the requested next-green phase. The additional logic will
then follow that selected sequence of phases, from the current
green phase, to the correct yellow phase for the green pair, to
the selected next-green phase.

III. PLANNING-BASED TRAFFIC LIGHT CONTROL

Inspired by the results of the CMU Pittsburgh traffic-light
experiment [17], we implemented a traffic light controller that
uses remote sensors and planning for deciding traffic phase
switching. This planning-based approach provides an alterna-
tive against which to compare our auction-based approach.

With the planning-based approach, we solve the phase
scheduling problem by collecting the traffic data from a
sequence of induction loops that are listed for a given phase
of the traffic light, with the loops spaced at about 3 seconds
of expected travel time apart from each other. The sensors
are placed in the roadway, spaced at distances dictated by the
speed limit and this target separation time. In the planning-
based approach, we use these sensors for both occupancy and
speed data [18]. We assume that they have been placed on
all lanes that could lead traffic to the controlled intersection
in 15 sec (or less) of travel. When intersections are closely
spaced, these non-local sensors may be on the other side of
other intersections, leading to a large web of sensors and
distributed communication. While this probably includes more
sensors (and communication) than the likely minimum require,
it enables us to create a detailed speed and occupancy profile
for each section of road, which we use in our planning.

Internal to our planning-based traffic lights, we maintain
time lines of when we expect cars (observed by local and
remote induction loops) to arrive at the controlled intersection.
The car counts (from the known induction loops) are scaled by
a weighting factor, based on the historically observed turning
ratios between the sensor and the traffic light as well as the
historically observed rates for which phase will be needed by
the incoming traffic (e.g., straight or left turn at the controlled
intersection itself). The distance-to-time translation used to put
the car onto the time line is based on the observed speed profile
for the road (also from the known induction loops). We then
use dynamic programming to solve for the best phase sequence
and transition times.



The dynamic-programming search starts with a single
potential schedule that has the start time of the current phase
marked in the past. If there are cars waiting at the traffic light
on other phases, it increases the solution space by considering a
phase change to each of the other phases that are in demand as
soon as is possible, given the yellow-duration lead time needed
for scheduling. For example, considering Figure 1, if phase 3
is the current phase and there is traffic waiting for phase 1
and phase 2, the space of possible solutions will expand to
three possibilities: (a) remaining on phase 3; (b) changing to
phase 1; and (c) changing to phase 2. This expansion of the
possible solution space continues with new possible branches
being introduced each time a new car arrives.

The timing of the phase changes is restricted so that the
minimum time given for each phase of the light (plus the
yellow duration) is respected: if phase 4 requires a minimum
duration of 3 seconds, then the next possible phase change will
be postponed until 3 seconds plus the yellow duration after the
start of phase 4. Also, if the current phase is expected to be
“empty” before the arrival of the new traffic (that is, no cars
waiting as measured by the local induction loop sensors and
no cars arriving as measured by the remote induction loop
sensors), the proposed phase change for the newly arriving
traffic is moved up to be as early as possible, such that the
yellow will start just after the current phase is empty. This
early change has the advantage of reducing the amount of time
that the intersection remains under utilized — for example, in
the case where the minimum-duration constraint on the next
phase would not allow switching phases a second time as early
as would be optimal.

Given how the phases can change (described above), the
scheduling solution is then selected based on minimizing a
combination of penalties:

e  Speed-loss penalty: This is the penalty for forcing a
car to stop. The penalty is scaled by the speed limit of
the road that the car will be traveling onto. That speed
was chosen since it best reflects the acceleration that
the car will require, that it otherwise would not have
needed had it not been forced to stop.

e  Waiting-time penalty: This is a penalty that is linear
in the amount of time that each car must stop at a red
light.

e  Phase-change penalty: This is a penalty that is added
for each proposed phase change. It increases the
penalty on the schedules that unnecessarily cycle
through the different phases when there is no waiting
or incoming traffic.

The solution space is repeatedly expanded and then pruned,
using the approach described in [26]. It is expanded by
moving forward through all of the arrival times of incoming
traffic. After each expansion, the solution space is checked for
schedules that can be removed, due to a higher partial cost
with the same ending phase and the same numbers of waiting
cars. We describe our results with planning-based control in
Section VII.

The alternative that we propose to planning-based lights is
an auction-based system. It is described next.

TABLE I: Definitions used in Auction-Based Control

Minimum duration: The shortest duration that the current phase will be active for.

Priority duration: The duration before which the current phase has priority on
the light’s control. Before this time, as long as the current phase’s “bid” is non-negative,
it will remain active. After this time (or if the current phase’s bid is negative before this
time), the active phase is selected through an “auction” process.

Release duration: The duration after which the current phase cannot continue to
be active, unless none of the other phases want the control: that is, unless all the other
“bids” are negative. After this time, the active phase is selected through a “handicapped
auction” process.

Auction: The process of comparing positive, zero, and negative bids placed by
each of the green phases of the light, to determine which green phase should become
active (after an intervening yellow phase, if needed). The auction is won by the highest
bid (even if that is negative). Ties are broken by proceeding round-robin through the
maximum-bid phases.

Handicapped auction: The auction process that is used after “release duration”.
In a handicapped auction, the current phase’s bid is limited to be less than or equal to
zero. With that handicap applied, the auction proceeds as before.

Bid: The weighted sum of the current, local induction-loop measurements (s;):
the bid b; for phase 7 is b; = E]' w;j;s;. The weights (w;;) are selected by the
optimization process. When the optimization process sets w;; = 0, we refer to that as
having removed sensor j from phase .

IV. AUCTION-BASED TRAFFIC LIGHT CONTROL

In contrast with the planning-based traffic-light con-
trol [26], our auction-based approach does not require the
use of remote sensors since no planning is required. Instead,
only the typical induction loops, at the entrance lanes to the
controlled intersection, are used. It also does not use light-to-
light or car-to-light communication. Auction-based traffic-light
control takes an approach similar to current on-demand phase
switching but makes better use of the local induction-loop data.

Each phase of this traffic light logic has three time-
separated behaviors (see Table I). The timing and inputs used
for these behaviors are pre-optimized to the general traffic
patterns that are expected a given time of day (e.g., morning
commute hours). Based on our tests, it is the combination of
these three behaviors along with the input optimization that
are responsible for the improved efficiency. We describe the
behaviors in this section and the optimization process in the
next section.

In auction-based logic, each traffic-light phase definition
includes a weighted list of sensors that is to be used by
that phase to determine its “bid” for the cycle at any given
time. The weights can be positive or negative and are used to
effectively scale the number of cars observed on that sensor.
For example, a phase for a lower-priority road could include
in its sensor list a negative-weighted induction loop from in
front of the higher-priority road, so that the lower-priority road
would be more likely to release the phase when cars arrive
from the higher-priority direction. Similarly, a more heavily-
used phase could use a larger positive weight for some of
its own sensors, to allow it to “out-bid” the lighter-traffic
direction. Instead of having these weighted lists of sensors be
given as a fixed input that is manually created, the automated
optimization procedure selects which of the local sensors to use
with what weight for each phase. This process is described in
Section V.

Since the optimization procedure is allowed to remove any
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Fig. 2: Flowgraph of phase change decisions within the
auction-based traffic light

or all of the sensor inputs to any given phase’s bid, we designed
our control logic to handle these cases. When a phase has no
sensor inputs, it will continually put in a zero bid for the light.
If the optimization procedure removes all sensor inputs from
all phases of the traffic light, the auction logic results in the
light behaving as a static light, using round-robin cycling and
using each phase’s “priority duration”. As we will discuss in
Section VII, this no-sensor situation does arise in our tests.

As shown in Figure 2, the way in which the traffic light
decides whether to change phase depends on how long the
current phase has been active. We use the terms, “minimum du-
ration”, “priority duration”, and “release duration” to separate
the time intervals for these different behaviors. As suggested by
its name, “minimum duration” is the minimum amount of time
that a phase must be green before possibly changing to yellow.
The minimum duration is given as an input to the simulation
and can be set to be different for each phase of the light. For
simplicity, we start with all of the minimum durations as 3
seconds but allow the optimization procedure (Section V) to
adjust that to be larger, if needed to avoid “thrashing” between
phases in light traffic. No phase changes can occur before
minimum duration.

For each second between minimum duration and “priority
duration”, the current phase has priority on the traffic light. If
its bid for the cycle is non-negative (indicating that it would
like to have the cycle), then it will keep the cycle, no matter
what the bids of the other phases are. While this greedy
approach may seem to be suboptimal, it has the advantage of
increasing the average duration of the cycles and reducing the
amount of time spent switching between green phases (and
thereby reducing amount of time wasted on yellow lights).
Again, we use parameter optimization to adjust this priority
duration according to the expected traffic demands.

For each second between priority duration and ‘“release
duration”, a micro-auction is held between the different phases.
Each phase bids according to the weighted sum of the sensors
that have been selected for that phase. If the highest bid
is negative, then the current phase is the default winner of
the cycle until one or more of the bids change. Otherwise,
the phase with the highest bid will get the cycle (after the
appropriate yellow). If multiple phases put in the same winning
bids, then the winner is selected by proceeding round-robin
througlh the phases, starting with the phase after the current
phase.

For each second after the release duration, the same type
of auction is held but with the added constraint that the current
phase cannot bid an amount above zero. This non-positive bid
by the current phase “releases” the cycle. Any other phase that
would like to have the cycle will win the auction away from
the current phase. If more than one of the other phases have
positive bids, the auction process will pick the strongest bidder.

The progression restarts after the start of each green phase,
progressing from non-negotiable (below minimum duration) to
greedy (below priority duration) to auctioned (below release
duration) to a handicapped auction (above release duration).

V. PARAMETER OPTIMIZATION FOR TRAFFIC LIGHT
CONTROL

No matter which algorithm is used for traffic light con-
trol (fixed-schedule, planning-based, or micro-auctions), each
approach has numerous parameters that must be specified to
complete the program (Table II). For example, in the simplest
case, with fixed schedules, for each light, the length of the
phases and their offsets have a large impact on the performance
of the system. As mentioned earlier, many machine learning
approaches have been used in setting these parameters. Perhaps
the most common approach seen in traffic light optimiza-
tion literature is the use of genetic algorithms (GA) [9] to
set the numeric or enumerable values associated with traffic
lights [13], [15], [16], [21].

Despite the prevalence of genetic algorithms in this do-
main, we have found that a much simpler mechanism, next-
ascent stochastic hillclimbing (NASH) works as effectively
as GAs and is simpler to implement and faster in practice.
The basic algorithm is described below. This topic is further
explored in [4].

For any given approach, we start with specifying the set of
parameters that can be modified. With those, NASH operates
as follows. A parameter is randomly chosen from the set and
the modification operator for that parameter is applied. In the
simplest case, if the parameter is a real number, it is perturbed
by a small amount (for example +5%). If the parameter can
take on a set of distinct values, another value is selected.
Once the parameter modifications are made, the schedule is
then “repaired”, if needed. The repair process ensures that the
parameters are consistent with each other and are set within the
appropriate ranges. For example, in the case of fixed-schedule
light settings, we may want to ensure that the overall cycle of
the light remains the constant to keep all lights in synch, but the

't is this round-robin assignment for tie breaking that causes auction-based
lights with no sensors to behave like static-lights.



TABLE II: Parameters Optimized for Each Approach

Fixed-Schedule  Planning Micro-Auctions

Phase Lengths
Phase Offsets

Penalty Weights ~ Detector Weights
Detectors to Use

Durations (Minimum, Priority, Release)

individual phase lengths can change. In this case, once a phase
length perturbation has been made, the repair process ensures
that the other other phase lengths are reduced appropriately to
compensate and keep the overall cycle length static.

Once any repairs are made, the new schedule is evaluated
with the desired objective function, where the objective func-
tion can be overall/average wait time, maximum wait time,
emissions, etc. If the perturbation improved the performance
on the objective function over the previous settings without
the perturbation, the perturbation is accepted, and the schedule
with the perturbation becomes the new baseline. If the pertur-
bation has not performed as well on the objective function, the
perturbation is recorded (so that it is not explored again), the
perturbations are discarded from the schedule, and the previous
baseline remains unchanged.

The exact number of perturbations made in each iteration
is chosen stochastically. The maximum number allowed was
determined empirically and varied according to the complexity
of the schedule being developed. The more parameters the
schedule had, the larger the maximum number of perturbations
per step that were allowed. This process is iterated until either
a satisfactory solution is found or time expires.

VI. EXPERIMENTAL SET-UP

Our goal in this paper is to test the auction-based traffic
lights against currently deployed traffic lights (and against
planning-based traffic lights), using real road and traffic data.
First, we describe what is required to import this data into
Sumo [14], the simulation package employed.

A. Anonymous Traffic Data

To allow our tests to be relevant to actual traffic situations,
we use a demand profile that reflects the reality of that section
of the roads by using anonymized location data collected from
opted-in Android users [8]. The raw data, which itself does
not include personally identifiable information (PII), is also
scrubbed to further reduce identifiability risks. For most of
our simulation work, we only keep the starting time for when
a track enters the mapped area. However, as will be covered in
Subsection VI-B, we do use the differences between the time
stamps within each individual track to estimate the currently-
fielded traffic-light phase durations and offsets.

From the anonymous track data, several steps are required
to make them appropriate for use in our simulations. We select
data with tracks that intersect with the map area that we will
use in the Sumo simulation, based on the road-segment ids
to which they have been “snapped.” We also filter by time,
limiting to data between a given start and end date. We then
alias all the given times down to the weekday and time of day
(e.g., overlapping data from multiple weeks to bring together
an “average” Tuesday 7:00am-11:00am profile). This allows

Fig. 3: Traffic at Shoreline
and 101/85 exit ramps at 9am
on a summer Tuesday, based
on Sumo simulation of traf-
fic [14], using “matched-to-
current” traffic lights (see Sub-
section VI-B). Each yellow tri-
angle represents one vehicle.
# Light 4 (see Figure 4) controls
fl the intersection of Shoreline,
the exit ramps, and La Avenida
(the small road that enters the
intersection from the east)
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us to combine several weeks worth of data and make up for fact
that not every vehicle traveling through our space/time window
of interest will have an opted-in Android phone. By aliasing
our data on a week-long cycle, we can bring the demand levels
up to the DOT-reported levels and do so with more natural
variations in routes and start times than would be seen using
simple replication.

Finally, we find all the tracks that begin or end at a traffic
light within our simulation. Most of the tracks that begin/end at
controlled intersections do so as part of the PII filtering: the PII
filtering does not distinguish between long stops due to traffic
queues versus personal destinations, so many tracks actually
begin/end at congested intersections. We can allow cars to
enter and exit the simulation at other uncontrolled intersections
(similar to cars entering or exiting the roadway from parking
areas) but, since we are trying to model the effects of the traffic
lights on the flow, we extend these tracks so that, as a group,
they have the same turning ratios as are otherwise seen from
cars entering or leaving that intersection onto their observed
direction.

Figure 3 gives an example of what our simulation estimates
as the typical traffic pattern for Tuesday 9am at Shoreline and
the 101 and 85 exit ramps.

B. Street and Intersection-Control Data

In order to use real street layouts, we import Google’s
map data into Sumo, using two map-reduces [6] to complete
the import. In the first map-reduce, we select a lat-long
region and output an intermediate format for the non-private
roadways in that region, re-organizing connection information
(e.g., incoming-to-outgoing lane connections and disallowed
turn sequences) to bring it in line with what the Sumo import
functions require. We also included in these intermediate struc-
tures information about stop sign and traffic light locations,
using a combination of Google maps and OpenStreetMap [11]
data. From this intermediate format, we then complete the



Fig. 4: The area used for the traffic tests, as seen in Google
maps (left) and Sumo (right).

translation to Sumo node files, edge files, and connection files.
Separating the process into two steps allows us to run over
large geographic areas (e.g., thousands of square miles within
California) and to then focus our simulation on a much smaller
geographic area (e.g., the Shoreline-101 interchange area).

We also want to determine the currently-fielded program-
ming for traffic lights during morning-commute hours. In Sec-
tion VII, we use that baseline simulation to evaluate whether
our approach will improve traffic flow, relative to the current
situation or not. We cannot simply use the observed travel
times, directly from the anonymous track, since there are many
strong sources of variation between those times and what
would actually be achievable in our simulations including:
possibly incorrect total load estimates (we do not have exact
numbers of cars for the time period in question), time-aliased
data (we are folding several weeks worth of data over onto
itself to provide additional track data, to make up for the
subsampling done by needing to have an opted-in Android
phone without reducing variability in the final estimated traffic
mix), and systematic biases within the simulation software
(Sumo’s virtual drivers tend to be more law abiding than
our local morning commuters). We use the same optimiza-
tion procedure described in Section V to estimate the phase
durations and offsets of the traffic lights in our area, with the
objective function forcing a match between the simulated travel
times and the observed travel times. We refer to these traffic
light programs as matched-to-current lights in Section VII.
Extensive details about this approach and the accuracy of the
results are given in [4].

Figure 4 shows the map area that we used for our tests. It
includes seven traffic lights, at the intersections shown in red
on the right subfigure. We number these intersections, to allow
further discussion in Section VII.

VII. RESULTS

In Tables IIT and IV, we compare different approaches to
traffic light control over different commuter-traffic profiles.
We perform the comparison by considering as our baseline
the travel times and traffic load under the matched-to-current
light controls. For that baseline, the number of cars and the
distribution of routes is set to match the processed route data
from Subsection VI-A over the indicated time window (e.g.,
8:00am—-9:30am) on a Tuesday morning in the summer of
2014. We then run the Sumo simulation, and get the average
travel time for that set of cars.

When comparing an alternative approach (e.g., optimized
static-phase controls) to that baseline, we run the simulation
using the alternative control approach, always using the same
distribution of routes as was used for the baseline. For Ta-
ble III, we keep the same number of cars as well and just
compare the mean travel-time (MTT) changes. For Table IV,
we scale the number of cars up or down (with the same
distribution of routes), until we match its average travel time
to the baseline travel time, giving us a measure of the change
in capacity. Comparing Tables III and IV, we find that the
percent change in MTT is exaggerated compared to the change
in capacity. Since promised strong improvements to travel
times have seldom remain true for long, due to reactively-
increased demand [23], we emphasize the capacity changes in
our discussion.

The first lines of Tables III and IV report the results of
our comparison of optimized static control to the matched-to-
current control. The optimized static control uses the phase
durations and relative offsets that were found to be best for an
average-morning commute period (weekday 7am—11am), using
NASH (Section V). There are improved MTT and capacity
throughout the commute cycle, with the largest improvements
seen when it is most needed, during the 8:00-9:30am peak pe-
riod. For example, we could reduce travel time during the peak
period by nearly half, without changing demand, using this
optimized static controller instead of the matched-to-current
controller. Alternatively, we could increase the peak period
load by as much as 15% without increasing the travel times.
This improvement demonstrates the power of the optimization
procedure. It is interesting to see this level of improvement
using static light timing, even after the light synchronization
work was done on Shoreline Blvd in 2012-13 [5]. It may be
that the increase in traffic in those two years is enough to
change the best choices for the traffic light durations.

For planning-based lights (second line of Tables III
and IV), we did not see a consistent change in MTT or
capacity across the commute periods that were studied. The
MTT and capacity changes during the peak-rush period were
positive (21% and 3%, respectively) but were still less than
half of the improvement seen under optimized static lights or
auction-based lights, both of which need less infrastructure
and less computation. The MTT and capacity changes during
the average-rush and low-rush periods were slightly negative
compared to the matched-to-current traffic lights. These disap-
pointing results were most likely due to the situation that was
studied. The majority of the traffic that was involved in the
simulation were cars exiting from a freeway onto a congested
arterial road. Most of the traffic was not in ‘“clusters”, as
observed in the Pittsburgh study [17]. We also did much
less optimization on this set of controls, changing only three
parameters (the penalty weights) across the full simulation.
This choice was because of the obvious physical correlates
for our other parameters (observed speed profiles for sensor-
to-light delays and turning ratios for sensor-to-phase weights).
Even so, it would be interesting to see if we could improve
on these results using NASH optimization.

Finally, our auction-based traffic lights provided the largest
gains both in speed and in capacity over the matched-to-current
controls (third line of Tables III and IV). Of these results, the
biggest gains were during the peak-rush period, when it is most



TABLE III: Mean-travel-time (MTT) changes under matched demand

Peak rush (8:00-9:30 am)
21861 observed cars
668.68 sec observed MTT

Average rush (9:00-10:30 am)
20139 observed cars
173.65 sec observed MTT

Low rush (9:30-11:00 am)
18154 observed cars
110.37 sec observed MTT

Optimized static lights
Planning-based lights
Auction-based lights

449 faster (376.56 sec MTT)
21% faster (525.82 sec MTT)
79% faster (140.87 sec MTT)

30% faster (121.37 sec MTT)
8% slower (187.18 sec MTT)
38% faster (108.01 sec MTT)

6% faster (103.58 sec MTT)
6% slower (116.54 sec MTT)
10% faster (99.57 sec MTT)

TABLE IV: Capacity changes under matched MTTs

Peak rush (8:00-9:30 am)
21861 observed cars
668.68 sec observed MTT

Average rush (9:00-10:30 am)
20139 observed cars
173.65 sec observed MTT

Low rush (9:30-11:00 am)
18154 observed cars
110.37 sec observed MTT

Optimized static lights +16% (25306 cars)
Planning-based lights +3% (22473 cars)
Auction-based lights +47% (32082 cars)

+9% (22037 cars) +8% (19661 cars)
-4% (19253 cars) 2% (17736 cars)
+46% (29499 cars) +11% (20204 cars)

needed. When we used auction-based traffic controls compared
to the matched-to-current lights, we were able to reduce the
MTT during peak-rush hours to about one fourth of the time
currently needed for that time window, to a time that is close
to the current MTT for the average-rush period. Looking at the
capacity changes, we were able to allow 47% more traffic into
the road network (using the same distribution of routes) during
the peak-rush times, without increasing travel times. While the
travel times during peak hours are pretty awful (nearly 4 times
longer than just an hour later, for similar travel distributions),
being able to hold the travel times to this level even with 47%
more traffic is a significant accomplishment. If we were to
increase the traffic load during peak hours by 47% using the
matched-to-current controls, the travel times would go up by
230% (to 2203.6 sec).

The choices made by the optimization procedure applied
in auction-based control are interesting. In four of the seven
lights, the optimization procedure removed all sensors from
all the phases, resulting in the lights acting as static lights:
lights 1, 2, 5, and 7 (see Figure 4 right for numbering). The
phase durations seen on all of these lights except light 5 were
nearly identical to the durations found when we optimized
static-control lights: the other three were within 2 sec (out of
86 sec total cycle length) of the optimized static-control light
durations. At least this small amount of variation (if not more)
is expected from a stochastic search process, such as NASH.

The optimization procedure also found several different
ways to in effect remove dedicated-left phases, especially at
the most congested intersections (for example, lights 3 and 6
in Figure 4).% This behavior seems especially interesting, given
the reduced capacity that is generally seen at intersections with
dedicated lefts [23]. One approach that the system found to
sideline a dedicated left is to remove all the sensors from that
phase (forcing that phase to always bid zero) and to mirror
a full set of non-zero sensor weights between the opposing
direct-through phases. For example, at light 3, the optimization
removed all sensors from phase 4 (see Figure 1) and made
the weights for phase 1 and phase 3 mirrors of each other
(e.g., if phase 1 had w weight for a sensor, then phase 3
had —w weight for that same sensor). Whenever there was

2The largest amount of congestion is at light 4. However, due to the
complexity of that intersection, there was no dedicated-left phase to remove.

any traffic at the intersection, one of the either phase 1 or 3
would have a positive bid (with the other having an equally
negative bid). That positive bid will always win the auction
away from the zero bid of the dedicated left, without any
ties. Another approach that the optimization process found to
remove dedicated lefts mostly from the less-used road was
to match the bids of the dedicated left to the direct-through
phase that was just before it, in the round-robin ordering.
Specifically, on light 6 (Figure 4), phases 1 and 2 share a
matched set of sensor weights and phases 3 and 4 share another
matched set of sensor weights. This means that the direct-
through/dedicated-left pair will always tie on any auctions.
Since the direct-through phases are always before the dedicated
left phases in the round-robin cycle when starting from an
opposing direction, the direct-through will win the tied bidding
away from the dedicated left.

The optimization also used the time differences between
the release durations to favor traffic on the phases that were
more prone to long lines. For example, at light 4 (Figure 4),
the priority duration given to the 101 exit ramp was ten times
longer than the priority duration given to La Avenida (the small
road that enters the intersection from the east). With this 10x
weighting, we see the traffic delays suffered by the La Avenida
traffic approximately equal (on a per-car basis) the delays seen
by the 101-exit-ramp traffic.

Finally, the optimization used the number of incoming
lanes allowed to pass through a phase as another way to
bias the auction towards the dominant direction of traffic. For
example, at light 3, the combined weight given to the sensors
of Shoreline traffic is five times that given to the Pear-Ave
traffic (the east-west road at that intersection). This was done
by giving all of the sensors the maximum-allowed positive or
negative weights and simply relying on the number of sensors
(which equals the number of lanes) to provide priority to larger
streets.

VIII. CONCLUSIONS AND FUTURE WORK

Traffic light optimization can significantly reduce traffic
congestion. In this paper, we propose several novel ideas for
improving phase switching in traffic lights, relying solely upon
local information. Our primary contribution is the idea of using
independent micro-auctions at each light to incorporate current



traffic conditions and enable unconstrained phase transitions
that optimize traffic flow. We demonstrate the feasibility of
the proposed methods in simulation using real-world traffic
data gathered from anonymized opt-in location readings from
mobile phones.

Optimizing light settings based on expected traffic dis-
tributions was shown to improve flow in the Shoreline area
two years ago [5]. Even following this earlier optimization,
we observe that re-optimizing those settings for current con-
ditions could further improve capacity by up to 16%. More
importantly, we note that this type of frequent optimization is
both worthwhile and feasible, given the amount of anonymized
traffic data that can be obtained from opt-in mobile phone
locations.

Among the approaches we evaluated in this paper, the
planning-based approach was the least successful. It also was
the one to which we applied the least amount of optimiza-
tion, due to the strong physical interpretation of each of the
parameters. A future research direction is to test this approach
using fully optimized parameters that may not correspond to
physical interpretations. Our preliminary experiments suggest
that, if planning-based approaches are to be combined with op-
timization, they may require a more sophisticated optimization
procedure to account for the complex temporal interactions
induced by interlocked planning.

This paper demonstrates that local micro-auctions hold a
great deal of promise. Not only are they simpler to implement,
they require less physical infrastructure than planning-based
approaches. When traffic lights are already set up for on-
demand switching, the auction-based approaches only require
changes in the light’s software. We studied this approach in
conditions dominated by the confluence of a freeway exit ramp
with a congested arterial road. We are interested in evaluating
whether the same gains are possible in intra-city grids. In any
case, the observed improvement in capacity in our experiments
is sufficiently large so as to encourage active exploration of
optimized, auction-based traffic light control.
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