
D13.7 
AN ALGORITHM DESIGN ENVIRONMENT FOR SIGNAL PROCESSING 

Michele Covell 

SRI International, 333 Ravenswood Ave, Menlo Park CA 94025 
(work completed at M.I.T., Digital Signal Processing Group, Cambridge MA 021 39) 

ABSTRACT 
Classically, the computer has been used in signal pro- 

cessing simply for numerical calculations, leaving the major- 
ity of the design process has been unsupported: in particu- 
lar, the analysis of the properties of the selected algorithm 
and the rearrangement of the algorithm to find efficient, in- 
put/output equivalent implementations. This paper explores 
some of the issues involved in supporting the symbolic rear- 
rangement of algorithms. The paper demonstrates the po- 
tential of automatic rearrangement through the design of 
an incoherent detector for sonar FSK-code signals. An in- 
novative implementation, discovered by the computer envi- 
ronment, for the frequency-chip matched filters is presented: 
this implementation reduces the computational requirements 
from order N log N to order N .  

I. INTRODUCTION 
Development of digital signal processing operations or 

programs often involves algorithm manipulation in addition 
to the familiar data pressing and algorithm definition. Al- 
gorithm manipulation can involve the analysis of a given 
signal processing expression or algorithm to determine its 
properties or its rearrangement to provide an alternate im- 
plementation. Examples of property analysis include the de- 
termination of the linearity and time-invariance of a sub- 
band analysis/synthesis system. An example of algorithm 
rearrangement is provided by the manipulation of the sub- 
band analysis stage to interchange to order of filtering and 
downsampling. 

Although the conceptual distinction between data pro- 
cessing, algorithm definition and algorithm manipulation is 
clear, most real situations involve all three activities. The 
focus of the research reported here has been to explore the 
possibility of a signal processing workstation which provides 
an integrated environment for data processing, algorithm 
definition and algorithm manipulation. This research has 
been the result of a sequence of research efforts[1,2,3,4]. This 
article focuses on the design environment, ADE, developed 
in [4]. Like many other signal-processing software environ- 
ments, ADE can be thought of as a block-diagram environ- 
ment. A large number of low-level signal-processing “blocks” 
or systems are defined in ADE: there are more than 210 hi- 
erarchal classes of signals and systems in ADE. By stringing 
systems together, the user of the environment is often able 
to quickly describe the signal-processing algorithm which is 
of interest. If some desired signal-processing operation is 

not available, the user of the environment has the option of 
defining a new class of signals or systems. 

In addition to these basic capabilities, ADE provides 
facilities for supporting the analysis and manipulation of 
signal-processing properties. For example, ADE will prop- 
agate information about the range and periodicity of sig- 
nals through signal-processing systems, using information 
included in the system-class definitions. 

Finally, ADE provides the user with a high-level, signal- 
processing “compiler”. This “compilation” facility accepts 
a signal-processing algorithm and returns a list of the alter- 
nate, input/output equivalent implementations which were 
uncovered using the transformation rules embedded in the 
environment. While these rules provide the actual trans- 
formations which are used in finding the equivalent imple- 
mentations, the search process which is used to find all the 
appropriate transformations is comparatively complex. 

The remainder of this article focuses on the search process 
used for finding equivalent algorithms and the results have 
been achieved using the described approach. 

11. MULTIPLE-BEAM SONAR IMAGING USING FSK CODES 
The problem of FSK-code detection and discrimination 

is used within this article as an application area to illustrate 
the potential and the difficulties of algorithm rearrangement. 
This section introduces this sonar application of FSK codes. 

The use of multiple-beam, code-division sonar[5] avoids 
the drawbacks of conventional sonar imaging systems. The 
transmitter is a set of N transducers, each illuminating a 
different direction and each transmitting a distinct FSK-code 
signal, S, for i = 1, ..., N .  The FSK codes are created from 
permutations of N individual, uniformly-spaced frequency 
chips. One wide-beam hydrophone is used as a receiver. 

The received signal is a superposition of the reflected en- 
ergy from each of the illuminated scattering centers. An 
unknown propagation delay from the combined forward and 
return paths is associated with each scattering center. In 
addition, a nonuniform phase distortion between frequency 
chips is introduced by the scattering characteristics of the 
object and the fluctuations in the propagating medium. 

Using this model, the discrete-time approximation to the 
optimal detectors uses matched filters to detect the individ- 
ual frequency chips followed by incoherent addition to create 
the detectors for the full set of FSK-codes. Since there is an 
unknown time delay in the return, the output from these 
detectors is desired at  each point in time. 
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111. UNCONSTRAINED SEARCH FOR EQUIVALENT 
A LG 0 RITH M S 

As mentioned in the introduction, ADE provides partial 
compilation of high-level signal-processing descriptions. This 
section provides an initial description of the search space 
which is explored in finding the equivalent implementations 
of an algorithm. 

The task of finding alternate implementations of a signal- 
processing expression is the same as finding all the identity 
transformations which are applicable to the signal-processing 
expression or one of its subexpressions. For example, to find 
the equivalent implementations of the matched filter bank 
used in the FSK-code detector, all the applicable identity 
transformations for the filter bank should be completed as 
should the transformations on the frequency-chip sequences 
used in the matched filters and the input sequence to  the 
matched filters. In addition, once an alternate description is 
uncovered, all of the identity transformations which are ap- 
plicable to this new description or to one of its subexpressions 
must also be applied. Thus, equivalent implementations of 
a signal-processing expression can be obtained in any of a 
variety of ways: ~ a - transformation -~ can be applied to the orig- 
inal signal-processing expression itself; a subexpression of the 
original expression can be replaced by an equivalent imple- 
mentation of the subexpression; or either of these approaches 
can be applied to one of the newly uncovered equivalent im- 
plementations of the signal-processing expression. 

A graphical representation of the search process is pre- 
sented in Figure 1. Using this representation, the problem 
of finding the equivalent forms of a signal-processing expres- 
sion, without consideration of its subexpressions, is repre- 
sented graphically as a net, as shown in Figure 1-a. One of 
the nodes of this net represents the starting signal-processing 
expression. The remaining nodes of the net represent equiv- 
alent implementations of the original expression. Some of 
these nodes are connected directly to the original node via 
simple transformation rules. These newly obtained nodes 
can themselves be used as seeds for other transformations. 
This search for additional nodes stops when no new nodes 
remain to be considered. 

Any of the nodes of this net can also be viewed as a com- 
bination of subexpressions which can also be manipulated. 
A subexpression can be replaced by any of its equivalent 
implementations in an enclosing expression. Graphically, re- 
questing the equivalent forms of a subexpression drops the 
problem down to another net and again tries to find con- 
nected nodes (Figure 1-b). The set of nodes found on this 
lower net is then projected back up into the original net by 
replacing the subexpression in the enclosing expression with 
its equivalent forms, as shown in Figure 1-c. This projection 
can generate new nodes in the original net. These new nodes 
are also used as seeds for finding additional nodes through 
recursive transformation and through expression decomposi- 
tion. 

The same strategies for finding the equivalent implemen- 
tations of an expression are obviously also applicable to find- 
ing the equivalent implementations of any of the subexpres- 
sions. Thus, each of the searches for the equivalent forms 

Figure 1: A net representation of the search for equivalent forms 

of the subexpressions can also give rise to subsearches, us- 
ing some even lower net. The downward progression stops 
when there are no more subexpressions which are signals or 
systems. 

Iv .  CONSTRAINED SEARCH FOR EQUIVALENT 
ALGORITHMS 

As described, the search for equivalent implementations 
of a signal-processing expression must consider the equiv- 
alent implementations of the subexpressions as well as the 
complete expression itself. Since each of the subexpressions 
are independently manipulated and independently recom- 
bined to form new equivalent expressions, the size of the 
search space under consideration grows combinatorially with 
the number of subexpressions. To illustrate, consider the 
problem of implementing the full FSK-code detector described 
in Section I1 for sixteen channels. Five independent descrip- 
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tions of a simple, finite-length convolution are embedded in 
ADE[4]. Thus, using these subexpressions as inputs into the 
incoherent summation, there will be 516 FZ 10” equivalent 
forms to consider.’ Each of these implementations would 
then be reconsidered to see if any additional equivalent forms 
could be found by exploiting interactions between the imple- 
mentations of the matched filters and the implementation of 
the incoherent processing. As illustrated by the projected 
size of the design space, some set of constraints must be 
imposed on the search process to avoid this combinatorial 
growth. 

The internal regularity of signal-processing algorithms 
can be exploited to limit the search space. Signal processing 
algorithms are often described at different levels of detail: for 
example, the four-point, rectangularly-windowed, short-time 
Fourier transform (STFT) of a sequence can be described by 
(output-of (stft (rectangular-window 4)) X) or by the 
structure shown in Figure 2.’ From the high-level descrip- 
tion of the algorithm, the regularity in the low-level compu- 
tational structure can often be asserted: from the high-level 
description given by the s t f t  system, the underlying regu- 
larity inherent in Figure 2 can be asserted. By enforcing 
these internal correspondences in the low-level descriptions, 
the space of equivalent forms which is explored can be dras- 
tically reduced. 

This approach to pruning the search is heuristic. HOW- 
ever, the regularity of the computation suggests that efficient 
implementations will reflect the same regularity: if separate 
sections of an algorithm are similar, then the efficient imple- 
mentations of these separate sections are likely to coincide. 

To illustrate, consider the description of the STFT given 
in Figure 2. This implementation of the STFT is provided 
explicitly by one of the transformation rules included in the 
definition of s t f t .  The regularity of this implementation is 
also explicitly pointed out by the rule. In particular, the sim- 
ilarity of the sequences feeding into the bank-of-sequences 
is pointed out using a “correspondence constraint”. The 
effect of applying a correspondance constraint on a set of 
subexpressions is that the rearrangement of these subexpres- 
sions is constrained to coincide: that is, if some transforma- 
tion is applied to one of the subexpressions, it will also be 
applied to the remaining subexpressions. In addition, the 
subexpressions feeding into each of the add/subt rac t  sys- 
tems are similar: the first addend into the k’th system is 
similar to the second addend into the k’th system. Thus, 
more correspondence constraints are placed on the inputs 
into each of the add/subt rac t  systems. Through these 
correspondence constraints, the manipulation of the corre- 
sponding subexpressions of the STFT is constrained to occur 
in synchrony, resulting in the manipulation of Sk[n], Rl,;[n], 
&,;[,I and x[n + 2m + i] where Sk[n], Rl,i[n] and Pl,;[n] are 

‘None of these implementations exploit the special structure of the 
modulated filter bank. The actual number of equivalent implementa- 
tions which have to be considered is more than 10”. 

2The structure shown in Figure 2 is the STFT using an FFT struc- 
ture. The familiar butterflies are not immediately obvious since a tree 
graph is used, to avoid the implication that multiple uses of intermedi- 
ate results will always use coincident implementations. 

Figure 2 An example of a “low-level” computational description with a 
highly regular internal smcm 

as labelled in Figure 2 and x[n + 2m + i] are shifted versions 
of the input sequence. By enforcing these constraints, the 
number of independently manipulated subexpressions is re- 
duced from O ( N * )  to Q(logN), where N is the size of the 
STFT. 

Once a correspondence constraint is imposed, that con- 
straint should propagate inward until a mismatch is detected, 
affecting the manipulations of all the intervening expres- 
sions. Recursive search, in which newly uncovered equiv- 
alent forms act as seeds for recursive requests for additional 
equivalent forms, can be used without modification. How- 
ever, subexpression manipulation must be modified for con- 
strained equivalent-form searches. In particular, if a cor- 
respondence constraint is imposed on a set of subexpres- 
sions, the equivalent forms of the subexpressions can not be 
generated separately. Instead, the equivalent forms of the 
subexpressions are found by manipulating the corresponding 
subexpressions identically. The alternate implementations 
which result from these manipulations of the subexpressions 
are then used to replace the subexpressions in the enclosing 
expression. 

To illustrate this process, consider the task of finding the 
constrained equivalent forms of the four-point STFT struc- 
ture shown in Figure 2. Some of these equivalent forms will 
be found by manipulating the input sequences to the system 
bank-of-sequences in synchrony: thus, the set of sequences 
labelled Sk[n], k = 1, ..., 4 are considered simultaneously. 
Under this parallel manipulation, each of the equivalent-form 
transformations which could be applicable to the individual 
expressions is considered. Only the equivalent-form transfor- 
mations which are applicable to all these parallel sequences 
will be completed and these transformations will be done on 
all of the sequences, simultaneously. The point of manip- 
ulation progresses inward by considering the inputs to the 
constrained expressions. Thus, athe set of sequences labelled 
Rl,l[n], Pl,l[n] and z[n + 2m + i] are also examined in turn. 

The equivalent forms found through the inner constrained 
manipulations propagate outward by combining the discov- 
ered equivalent forms with the operators which were dropped. 
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As before, each new set oi parallel equivalent expressions is 
then used to as a seed to find other constrained equivalent 
forms. This recursive search continues until no new, con- 
strained equivalent forms are found. This outward progress 
of constrained equivalent forms continues until all the equiv- 
alent forms of the original STFT are found. 

v. ADE FOR DESIGN OF THE FSK-CODE DETECTOR 
The FSK-code detector separates naturally into three 

subproblems: the recovery of the in-phase and quadrature 
samples of the sonar return; the modulated filter bank for 
matched-filter detection of the individual frequency chips; 
and the incoherent combination of the filter-bank outputs 
to create the detectors for the full FSK code set. These 
subsections describe the transfer characteristics which are 
desired for the the detector but they need not describe the 
actual algorithm which is used to compute the output sig- 
nals. Instead, any input/output equivalent implementation 
can be used in place of these descriptions. The set of all in- 
put/output equivalent implementations represents a design 
space which can be explored using an algorithm design en- 
vironment, like ADE. 

automatic algorithm manipulation is provided by the design 
of the matched filter bank used in the FSK-code detector. In 
particular, when the problem of finding efficient implemen- 
tations of the matched filter bank was submitted to ADE, 
the implementation shown in Figure 3 was uncovered. This 
implementation, which will be referred to as a “pruned FFT 
structure,” has the same underlying structure as the general 
FFT implementation of the modulated filter bank. The dif- 
ference lies in the number of butterflies that are computed at 
each stage: the pruned FFT structure has only one butterfly 
in the first stage, two in the second, four in the third and 
so on, while the general FFT structure has f butterflies in 
each stage. 

It is interesting to note that, with the pruned FFT, the 
order of the computational complexity is actually reduced as 
well as the number of computations themselves. The order 
is reduced from O(N*) for the direct-form implementation 
or from O(N1og N )  for the general FFT implementation to 
O ( N )  for the pruned FFT implementation. 

The design of this matched filter bank indicates the po- 
tential of constrained algorithm manipulation: the pruned 
FFT structure is an innovative implementation for a modu- 
lated filter bank or a STFT. Furthermore, due to the high 
internal branching factor of this algorithm, unconstrained 
manipulation is untenable. Using simple combinatoric anal- 
ysis, the number of equivalent forms which would be found 
by unconstrained manipulations on these structures can be 
estimated: this number is more than 10”. 

An impressive demonstration of the potential of constrained, 

VI. CONTRIBUTIONS 
This article has focused on the process by which ADE 

finds equivalent implementations of a signal processing sys- 
tem. Myers[3] was the first to consider the symbolic manipu- 

Figure 3: An innovative implementation, uncovered by AD& of the matched 
filter banks using a rectangular frequencychip window 

lation to support and expedite the design of signal-processing 
algorithms. One of the difficulties with the unconstrained 
manipulation of signal-processing expressions used in [3] is 
the combinatorial growth of the design space, due to the in- 
dependent manipulation of subexpressions. ADE introduces 
the idea of a regularity constraint to limit the combinatoric 
growth of the search for efficient implementations. Regu- 
larity constraints exploit the internal regularity of signal- 
processing algorithms to limit the size of the explored search 
space. This regularity in the low-level signal-processing de- 
scriptions is pointed out using information provided by the 
high-level description of the same operation. Without these 
constraints, many FFT-based and polyphase-based algorithms 
are beyond the scope of reasonable consideration, due to  the 
combinatoric expansion of these design spaces. 
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