D9.7

A NEW, EFFICIENT STRUCTURE

FOR THE SHORT-TIME FOURIER TRANSFORM,
WITH AN APPLICATION IN CODE-DIVISION SONAR IMAGING

Michele Covell, Acoustics & Radar Technology Laboratory, SRI International, Menlo Park, CA 94025

John Richardsomn, Digital Signal Processina (Yroun Masenrhusetts Institute of Technology, Cambridge, MA 02138

ABSTRACT

Although most applications which use the short-time
Fourier transform {(STFT) temporally downsample the out-
put, some applications exploit a dense temporal sampling
of the STFT. One example which will be discussed is code-
division, multiple-beam sonar. Given a need for the densely-
sampled STFT, the complexity of the computation can be
reduced from O(N log N) for the general short-time FFT
structure to @(N) using the Goertze! algorithm. This paper
introduces the pruned short-time FFT, a new computational
structure for efficiently computing the STFT with dense tem-
poral sampling. The pruned FFT achieves the same compu-
tational savings as the Goertzel algorithm and, unlike the
Goertzel algorithm, is unconditionally stable.

I. INTRODUCTION

Although most applications which use the short-time
Fourier transform (STFT) temporally downsample its out-
put, some applications exploit a dense sampling of the time
evolution of the STFT. Examples include time-scale modifi-
cation of speech using the short-time spectral magnitude [1]
and code-division multiple-beam sonar {2,3]. Given a need
for the STFT at each point, the complexity of the computa-
tion can be reduced from O(N log N) for the general short-
time FFT to O(N) using the recursive formulation given by
the Goertzel algorithm [4]. However, because this formu-
lation is recursive, there are difficulties due to quantization
effects. In particular, the variance of the computational noise
grows linearly with time.

This paper introduces the pruned FFT, a new compu-
tational structure for efficiently computing the short-time
Fourier transform with dense temporal sampling. This im-
plementation of the STFT achieves the same computational
savings as the Goertzel algorithm without relying on re-
cursive computation. Since this structure does not rely on
pole/zero cancellation, there is no instability in the compu-
tation.

Code-division, multiple-beam sonar is discussed in the
next section as an example of an application which exploits
a dense temporal sampling of the STFT. Section III out-
lines two classic implementations of the STFT: the short-
time FFT structure and the Goertzel algorithm. Section IV

introduces the pruned, short-time FFT, a new computational
structure for efficiently computing the STFT. In Section V,
the variance of the computational noise in the Goertzel al-
gorithm is shown to grow linearly with time, while that of
the pruned FFT is time-invariant.

II. CODE-DIVISION, MULTIPLE-BEAM SONAR

Conventional sonar imaging systems achieve resolution ei-
ther through the use of a single, swept beam or through the
use of multi-element arrays. These techniques, while highly
successful, present some inherent difficulties. In the case of
the single swept beam, the time required to scan through the
desired aperture can result in the failure to detect transients.
When multi-element arrays are used, the hardware require-
ments necessary to achieve high resolution can result in a
large, costly system. An alternative approach is multiple-
beam, code-division sonar (2,3]. ’

Multiple-beam, code-division sonar provides resolution in
azimuth and elevation using multiple, coded signals and res-
olution in range by the characteristics of the autocorrela-
tion of each of the signals. N transducers each illuminate
a different direction and each transmit a distinct signal, S;
for i = 1,..,N. A single wide-beam hydrophone acts as
a receiver. Multiple-hypothesis testing is then used to de-
tect and discriminate the returns from the separate beams.
Frequency-shift keyed (FSK) codes are'used to provide good
spatial resolution. - FSK codes are made up of individual,
uniformly-spaced fréquency bursts (commonly referred to
frequency chips). Each code within a set of N FSK codes
transmits the N frequency chips in a unique order and, thus,
is largely uncorrelated with the other codes in the set. The
high signal-to-signal rejection of these codes provides good
azimuth and elevation separation and their sharply peaked
autocorrelation functions provide good range separation.

Upon reception of the reflected waveform, each signal is
separately detected and the results are inverted to yield an
estimate of the spatial location of the scattering centers in
three dimensions. The minimum mean-square error receiver
for these FSK codes is shown in Figure 1. In-phase and
quadrature samples are taken of the received signal after
demodulation by the carrier frequency, f.. Matched filters
are used to detect the individual frequency chips, w(t)e’ ke,
The final section of the receiver combines the outputs from

This work was supported in part by: the Defense Advanced Research Projects Agency monitored by the Office of Naval Research under Grant
No. N00014-89-J-1489; the National Science Foundation under Grant No. MIP 87-14969; Lockheed Sanders, Inc.; a National Science Foundation
Graduate Fellowship; and SRI International. We wish to acknowledge the MIT-WHOI Joint Program, the Woods Hole Oceanographic Institution
and the Scripps Institution of Oceanography, as well as the sponsorship of Mr. Richardson’s participation by the U.S. Navy.

- 2041 -

CH2977-7/91/0000-2041 $1.00 © 1991 IEEE

i Sinife
CHl Sifn}= S~

E Cpaxln+kN | .

Gulal e

Figure 1: The minimum mean-square error detectors for a
set of N FSK codes

these matehed filters to form estimates for the backscattering
of each of the FSK waveforms.

The reeeiver shown in Figure I uses the outputs from the
frequency-chip matched filter bank at each point in time.
This dense temporal sampling of the outputs avoids the
highly non-linear problem of simultaneous estimation of the
waveform identity and its time delay. Since the digitized fre- .
quency chips will be w(ff-,n~)fc’"%k" for k= 0,...N — 1, the
bank of matched filters can be implemented as a modulated
filter bank. The remainder of this paper discusses alternative
implementations of modulated filter banks with dense tem-
poral sampling. It is the efficiency of these implementations
which makes FSK-code sonar imaging practical.

II1. CLASSIC IMPLEMENTATIONS
OF MODULATED FILTER BANKS

This section: discusses twe well known alternate implemen-
tations of modulated filter banks.
The Short-Time Fourier Transform

One well-known implementation of a modulated filter bank
is the short-time Fourier transform (STFT). The output of
the filter bank, y(t], is given by

T) y%kn

wit] = ft] * (w(gt)g]%“), = i zft — nju e
N1
= 2 -5 % kn 1y
:A:,; ([t + njw n)s) ¥ (1}

By defining wfn] = zft + njw(—Zn}, Equation I can be
seen to be the N-point discrete Fourier transform (DFT)
of wlm]. Formulating the matched filters as a series of
DFT’s allows the use of the FFT. This approach requires

(— - }} (log, N — 1} multiplications and N log, N additions -

per time sample t.
The Goertzel Algorithm

Another implementation of 2 modulated filter bank can be
derived by considering Equation 1. Define

rfn] = { zlt + n}

and X[k} and W[k] as the N-point, one-dimensional DFT’s
.of ,[n] and w(n L), respectively. Then, ylt} = X, [+ W"[k].
This approach imposes the shaping provided by w(t) through

0<n< N
otherwise

Z-T: 2 N| D -
- 1
i p m
I,Z .I-‘I{ -

Figure: 2. The Goertzel algorithm for the ™ channel of an
N-point. STFT

frequency-domain convolution. The advantage of shaping
x¢[n] after computing the DFT is that the Goertzel algorithm
can then be used to compute X, [k]. In particular,

X[k} = &/ F* (X [] + 2t + N — 1] - 2ft — 1)

As shown by Figure 2 and the above equation, the Goert-
zel algorithm computes each short-time spectral sample inde-
pendently, using an IR filter with a pole at &F* and an FIR
section with zeros at e/ ¥™ for m = 0,..., N — 1. This recur-
sive computation of X,[k] requires N multiplications and 2N
additions per time sample ¢. The total computational cost
of computing yk[t] depends on the form of Wk}, If W k] kas
only a few non-zero samples, the additional computational
cost imposed by shaping may be low and the total cost of
computing yx[t} will also be O{N).

A disadvantage of the Goertzel algorithm is that i
marginally unstable: the reliance on pole/zero cancellation
on. the z-domain unit circle introduces this instability. This
difficulty is discussed in Section V.

IV. A NEW STFT IMPLEMENTATION:
THE PRUNED FFT

An innovative implementation of the STFT with dense
temporal sampling, the pruned FFT, was recently derived
(5].* Like the Goertzel algorithm, the pruned FFT com-
putes the DFT of z,[n] and imposes the shaping provided by
w(t) through frequency-domain convolution. Figure 3 shows
the use of the pruned FPFT for an §-point STFT. As can be
seen from this ﬁgme, the pruned FFT has the same under-
lying structure as the classic FF'T. The difference lies in the
number of butterflies that are computed at each stage. The
pruned FFT has only one butterfly in the first stage, two
in the second, four in the third, eight in the fourth and so.
on, while the classic FFT has -’;—f butterflies in each stage.
Mathematically, the pruned FFT can be described as

X[k} = Xk,vr-1]
for t=0,..,#—1 and k£ =0, ..

where v = log, N
L2 =1

Xk} = Xk -1+ e T X, -1
Xdk+2.0 = XJk é—l]i—e"VkX‘_TEkl i3
Xf0,-1} = zff

"The pruned FET was originslly derived by ADE, a sigmal
processing, environment for aided algorithm design [5]. An
interesting math tical descnp!:wn of tlie pruned FFT using ge
ized Kronecker products was recently given in: {6} This mather
framework is particularly interesting because it provides a systematic
way to derive fast, unitary transforms.

- 2042 -

scale e-2

Figure 3: The pruned FFT implementation of the 8-point,
rectangular-window STFT .

This “pruning” of butterflies reduces the order of the com-
putational complexity from O(N log N) for the classic FFT
implementation to O(N) for the pruned FFT implementa-
tion. The amount of computation which is required for the
pruned FFT is actually slightly less than that of the Goert-
zel algorithm at N —log, N — 1 multiplications and 2NV — 2
additions per output sample.

Thus, the pruned FFT achieves the same computational
savings as the Goertzel algorithm. The pruned FFT struc-
ture has the added advantage of being numerically stable
while the Goertzel algorithm is marginally unstable.

V. QUANTIZATION EFFECTS

This section provides analytic expressions describing the
output error and its variance for the Goertzel algorithm and
for the pruned FFT.

The Goertzel Algorithm

The error in the output from the Goertzel algorithm de-
pends on the error in the addition operation, the error in
the value stored as the twiddle factor and the error in the
multiplication operation. Let €;,a[k], €mult, k] and €,q4t, k]
respectively represent the errors in the twiddle factor, I FE,
the multiplication; and the summation. Then, €[t, k], the
total error in the output from the Goertzel algorithm as a
function of time, is

et k] = (F* + ewalk]) €wlt = 1, K] + emullt, k]
+ewarlkle X K] + (¥ + cnlK]) €aualt, K]

To determine the variance of the output error, assume that
errors in the summation, the twiddle and the multiplication
are all zero mean and uncorrelated and that the summation
and multiplication errors are white. Let 02,4k, 0% [k} and
02,4lk] respectively represent the variances of the twiddle
error (€waik]), the multiplication error (€mu(t,k]) and the
summation error (€,44t, k]). Then, o2 ,[t, k], the variance of
the error in the output from the Goertzel algorithm as a
function of time, is

5
&
=
-4

a. 1000* pass

Figure 4: The output from the Goertzel algorithm on the
first and the 1000* loop through a single speech sequence

Utzot[t’ k] = (1 + Utzwdl[k]) atzot[t - 1’ k] + grznul[k]
+0 K1 X(k]1* + (1 + at?wdl[k]) adlk]

The variance of error in the output from the Goertzel al-
gorithm grows linearly with time. To see this, first assume
that there is no twiddle error or o2,,[k] = 0. Then, the
variance of the output error at time ¢ is the variance of the
output error at time ¢ — 1 plus some non-negative terms (in’
this case, the variances of the multiplication and addition
errors). When the variance in the twiddle error is non-zero,
the variance of the output error is the previous output-error
variance, scaled by a number greater than one, plus some
non-negative terms. Thus, the variance of the output error
grows linearly.

To show the effect of this growing variance, a short sec-
tion of speech was looped through the Goertzel algorithm a
thousand times. That is, the speech sequence was replicated
thousand times and this new repetitive sequence was put
through the Goertzel algorithm as one long data stream. All
of the quantities within the Goertzel algorithm were repre-
sented using a 24-bit mantissa: the quantization noise within
this simulation would be similar to that seen in a floating-
point DSP chip using a 24-bit mantissa. Figures 4-a and 4-b
show the outputs from the first and the 1000** loops through
the speech sequence, respectively. As can be seen from this
example and from the above equation, the computational er-
ror within the Goertzel algorithm is increasing across time.

The Pruned FFT

The error in the output from the pruned FFT depends on
the error in each of the FFT stages. The error in the output
from each stage depends on the error in the value stored as
the twiddle factor, the error in the multiplication operation
and the error in the addition or subtraction operation. Let

- 2043 -

enwai[k] represent the error in the twiddle factor and, within
the I'th stage and the k’th frequency channel, let ..ft, k, 1],
emuilty K, I] and €,q4ft, b,] respectively represent the errors in
the output of that stage, the multiplication and the addition.
Then exft, k], the total error in the output from the pruned
FFT as a function of time, is

emelt, K} = ewfti ko —1]
for I = @,...
ét‘ot'uf ¥ k % l]

where v = log, N
v—land k=0,.,2" -1
€roelt, o —] + €aaalt, K, 0]
o - N ‘
+ (775 + cwalh]) ewarlt - gkl = 1)
HewalR] X g B0+ emuft, k1]
1)+ otk + 2]
T o ‘ N
= (75 + cumlh]) ecarlt — swrk -1l
“'Q‘wdﬁk }‘\‘X tim ;FII'T tkvﬁ - e@’n;u’l‘[t) hw li]x
Gorft, 0,—1] = 0

it

Ul

6@»’% k4 2’: I

To: determine the variance of the output error, again as-
sume that errors in the twiddle factor, the multiplication,
and the addition are all zero mean and uncorrelated and
that the multiplication and addition errors are white. Let
o2, ulk] represent the variance of the twiddle error (€s,aifk]}
and, within the I'th stage and the k’th frequency channel,
let: UM[f k4, o2k, 1) and o2 [k, I} respectively represent
the variances of the output error for that stage (ewft, £,),
the addition error (cqqalt, ,]) and the multiplication error
{€mutlts b,). Then, o2 ,[t, k], the variance of the error in the
output from the pruned FFT as a function of time, is

ol It k] ol Jt kv — 1]
for I=0,..,¢~1 and k=0, ...
@f?a([tv kv, &] a:»zaftgtm kv f-]i]) + 'ﬂ‘-‘ri{}fﬁk%l’]i
T S xkﬂ'aw 2 N k lf
+ {1 + @swde }1)’@%‘%[o]
+atwdl[kIlXtc- J. [.k &‘l +amm‘[kﬂi
a"t'ot'ﬁt vsk%& - Il + @ad‘d”{& + 2' » []:

¢ _— N
+ (1 + olalk]) ohult — gy ki~ 1)
ol al X, _x [k, 41 + o k0]

L2 -1

gtzi)t'gfw’ k + grﬂ IIT

3T

Thus, the variance of the error in the computation ap-
proximately doubles at each successive stage but it does not
increase as a function of time. To show the stability of the
computational error within the pruned FFT, the same speech
sequence used to test the Goertzel algorithm was run through
the pruned FFT a thousand times. As with the Goertzel al-
gorithm, all of the quantities within the pruned FFT were
represented using a 24-bit mantissa. The first and 1000
sections of the output from the pruned FFT are both in-
distinguishable from Figure 4-a. As can be seen from this
example and from the above equations, the computational
error within the pruned FFT is stable across time.

V1. CONCLUSIONS

The. conclusions which can be drawn from this develop-
ment are that both the pruned FET and the Goertzel algo-
rithm are computationally efficient i’mpBementaﬁi”ons of the
STFT, under the condition of dense temporal sampling, and
that the pruned FFT has the advantage of stability with re-
spect to: computational noise. It is interesting to mote that
the topologies of the Goertzel algorithm and the pruned FFT
can both be used to describe fast algorithms for a running
sort. with N as the number of data points to be sorted [7}.
The Goertzel algorithm is transformed into a fast running
sort by removing the multiplication operation and by replac-
ing the addition operation by a merge/sort and the subtrac-
tion operation by a data remove. The pruned FFT can be
transformed into a fast running sort. by removing the mul-
tiplication operation and replacing both the addition and
subtraction operations by a merge/fsort. For the “pruned
sort”, all of the other butterfly outputs within a single stage
degenerate into the same operation.?

ACKNOWLEDGEMENTS:

Special thanks go to Bruce Musicus: for pointing out Ref-
erences (6] and [7] and to Malcolm Slaney both for his help in
creating Figure 4 and for his ideas for improving this article.

' S. H. Nawab, Signal Estimation from Short-time Spec-
traf Magnitude. R.L.E. Technical Report 494, Massachusetts:
Institute of Technology, Cambridge, MA, 1982.

J.S. Jaffe and JM. Richardson, “Code-Division,
iple-Beam Imaging,” In Proceedings OCEANS 89, pp.
1015-1020, 1989.

3] J.M. Richardson, A Code-Division Multiple-Beam
Sonar Imaging System, Electrical Engineer’s thesis, Mas-
sachusetts Institute of Technology, Cambridge MA, 1989.

[4] AV Ofppenhelm and R.W. Schafer, Discrete-time Sig-
nal Processing (pp. 585—587} Prentice-Hall, Inc., New Jer-
sey, 1989.

Bl M.M. Covell, An Algorithm Design Environment
for Signal Processing, R.L.E. Technical Report 549, Mas-
sachusetts Institute of Technology, Cambridge MA, 1989,

[6] P-A. Regalia and S.K. Mitra,“Kronecker Products, Uni-
tary Matrices and Signal Processing Applications”, SIAM
Review, vol. 31, no. 4, pp. 586613, December 1989.

[7] L. Pitas, “Fast Algorithms for Running Ordering and
Max/Min Caleulation”, IEEE Trans. on Circuits and Sys-
tems, vol. 36, no. 6, pp. 795-804, June 1989.

¥The “pruned sort” gotten from the pruned FFT is not quite the
same: as the running sort described in. [7]. The sorting, algorithm de-
rived from the pruned FPT divides each sorting problem into two sub-
problems: sorting the even samples and sorting the odd samples. The
sorting algorithm described in [T} divides each sorting problem into
two different subproblems: sorting the first half and sorting the second
half. This difference does not change the number of compa.nscms that.
are necessary. The change b does reduce the
ments from Q(N?) for the algorithm described in. [7} to O(N Iog N } for
the algorithm detived from: the pruned FET.

~ 2044 -

