Efficient and Accurate Label Propagation on Large Graphs and Label Sets

Michele Covell and Shumeet Baluja

Google Research
Google Inc., Mountain View CA, USA
covell@google.com shumeet@google.com

Abstract—Many web-based application areas must infer label
distributions starting from a small set of sparse, noisy labels.
Examples include searching for, recommending, and
advertising against image, audio, and video content. These
labeling problems must handle millions of interconnected
entities (users, domains, content segments) and thousands of
competing labels (interests, tags, recommendations, topics).
Previous work has shown that graph-based propagation can be
very effective at finding the best label distribution across
nodes, starting from partial information and a weighted-
connection graph. In their work on video recommendations,
Baluja et al. [1] showed high-quality results using Adsorption, a
normalized propagation process. An important step in the
original formulation of Adsorption was re-normalization of the
label vectors associated with each node, between every
propagation step. That interleaved normalization forced
computation of all label distributions, in synchrony, in order to
allow the normalization to be correctly determined.
Interleaved normalization also prevented use of standard
linear-algebra methods, like stabilized bi-conjugate gradient
descent (BiCGStab) and Gaussian elimination. This paper
presents a method that replaces the interleaved normalization
with a single pre-normalization, done once before the main
propagation process starts, allowing use of selective label
computation (label slicing) as well as large-matrix-solution
methods. As a result, much larger graphs and label sets can be
handled than in the original formulation and more accurate
solutions can be found in fewer propagation steps. We also
report results from using pre-normalized Adsorption in topic
labeling for web domains, using label slicing and BiCGStab.

Keywords-graph propagation, large-scale labeling, stabilized
bi-conjugate gradient descent, Gaussian elimination, topic
discovery, web domains.

L INTRODUCTION

Many different approaches have recently been proposed
to label propagation across weighted graphs of nodes
[1,2,3,4,5,6]. These applications share the characteristics of
having a limited amount of label data, often of uneven
quality, associated with a large graph of weighted
connections between many nodes, some unlabeled and some
partially labeled.

We build on the work done by Zhu and Ghahramani [2]
and Baluja et al. [1]. The Baluja paper described Adsorption,
a graph-based approach to estimating label distributions,
which was applied to providing YouTube video
recommendations. The resulting top-pick recommendation
was more accurate than the next-best alternative algorithm

for all users who had watched 3 or more previous videos,
with accuracy improvements of up to 100% for the most
frequent watchers. In Adsorption, each node (e.g., each video
for which we are building a recommendation list) has a
limited capacity for labels (e.g., the proposed
recommendations for that video). Baluja et al. [1] enforce
this constraint by interleaving a normalization step at each
node, in between every propagation step. Without this
normalization, the solution is not guaranteed to converge.

The interleaved normalization step is needed for
convergence but prevents label slicing: under the original
formulation, we cannot find the estimated distribution of a
subset of labels without solving for the full set of labels first.
Furthermore, the interleaved normalization prevents the use
of most standard linear-algebra techniques, such as Gaussian
elimination of nodes that are not of direct interest (though
they still are needed for their effect on the remainder of the
graph). Additionally, methods for rapid convergence to the
final solution, such as stabilized bi-conjugate gradient
descent (BiCGStab), cannot be used in the original
formulation.

This paper presents a formula for pre-normalizing the
Adsorption graph and label weights, such that there is no
need for interleaved normalization (Section III). With this,
we can use BiCGStab and Gaussian elimination. Our graph
size contains more than 10 million nodes and 4 billion inter-
connections (i.e., more than 10 million rows and more than 4
billion non-zero entries in the corresponding matrix), which
is more than we can reasonably handle in straightforward
implementations of these techniques. Instead, we use
implementations of BiCGStab and Gaussian elimination in
the MapReduce framework. We describe these
implementations briefly, in Sections IV and V. Finally, in
Section VI, we present our results on topic labeling of web
domains, using a graph based on shared keywords between
pages across the domains. We start the paper with a recap of
the original Adsorption application and mathematical
description, in Section II.

II. ADSORPTION (WITH INTERLEAVED NORMALIZATION)

The original formulation of Adsorption [1] can be
described as an iteration using two systems of equations:

X =a£n+ﬁ1£n+[yL 61] (1)

{énﬂ },* = {zm }i* /“{znu }l*“1 2

where double underlining indicates a matrix of values, a
single underline is a vector, not-underlined values are

scalars, and the tilde indicates a not-normalized set of values.
The matrix W holds the connection weights with row i

giving the incoming connections into the i’th node. This
matrix often is symmetric, to start with, but this property is
not required and will be given up later to allow for pre-
normalization. The matrix L holds the weights of the

injection label information. These are often noisy or
incomplete label sets based on some prior information, with
the graph propagation as a way to improve and expand these
label sets. In L, each label is associated with a column and

the weights for the injection labels for the i’th node of the
graph in the i’th row of the matrix. In addition to the true
labels, in L, Baluja et al. [1] add an abandonment label,

represented in (1) by the appended column 81. The scalar
J can be thought of in many different ways: as the loss in
certainty about any of the labels that are propagated for one
hop in the graph; as the number of random walks through the
graph that end with “abandonment”, giving no final label set;
as the regularization margin in the system of equations. The
other scalars (o, 8, and y) allow graph-wide balancing of the
previous (same-node) labels, of the propagated neighbors’
labels, and of the injection labels. Finally, the matrix X is

the label distribution estimate, with the i’th row containing
the estimated labels for the i’th node, including as the last
column the abandonment label. In this context, the node’s
abandonment weight provides a measure, at that node, of the
label uncertainty.

Equation (1) creates a new un-normalized estimate of the
steady-state label distribution across all the nodes using a
weighted combination of the previous normalized estimate
for the distribution (X,), of a graph-weighted propagated
version of that same distribution (WX), of injection labels
(L), and of the abandonment label (§). Equation (2)

provides a normalized estimate of the label distribution, by
dividing each row of the estimate from (1) by the L, norm of
the full label set, including the abandonment label.

Iterating over (1) and (2) together is guaranteed to
converge to a stable steady-state solution, as long as § is
greater than 0. Baluja et al. [1] used this algorithm to
successfully provide video recommendations that, using a
top-pick-accuracy measure, outperformed alternative
approaches. Our goal is to provide a formulation for the
same Adsorption algorithm that does not require per-
propagation-step normalization, allowing us to use label
slicing and standard linear-algebra tools.

III. PRE-NORMALIZED ADSORPTION

We achieve our goal of pre-normalized Adsorption by
first assuming that all associations in our graph and in our
label injection are non-negative. Specifically:

sign({)=(n }ii) =0 , sign({l}t_j) =0 ,and szgn({lé}y) =0

This non-negative assumption works well with the
partial-information applications that are the most common
ones in large-graph labeling formulations: for example, in
video recommendation, we can say that two videos are often
watched together, within a single viewing session, but it is

much more difficult to say that two videos are negatively
associated (that watching one means you are significantly
less likely to watch the other), since we seldom have enough
training data to make such an assertion with any confidence.

For those applications where we do have confidence in
negative label-to-node associations (negative values in L),

we can handle these by introducing a negated label column
and using positive associations with the negated label where
we would have otherwise used negative associations with the
positive label. Handling negative node-to-node connections
(negative values in W) is also possible but we omit it here,
since it is an uncommon use case (and is much more
complicated).

Assuming we have non-negative values in our
component matrices, we can consider the denominator of (2)
in more detail:

K.) -fozs pwix, [v o]} |

=Z(§{ag+ﬂ1}ik{§n kj)+2_{[wal @

j v

= Sor+pwh, S} +r3{L), +0 5)
= Y{oL+pw}, +r|{L}.| +o ©)

=0+ /J’"{l}l S+ y"{é}‘ [+0 (7

Equation (3) simply provides the expansion of the L; row
norm using the propagation (1). Equation (4) makes use of
the non-negativity conditions that we are requiring, in order
to remove the absolute values implied by the L; norm and
expands the norm summation, as well as the summation
implicit in the WX matrix multiply. Equation (5) swaps

)

1

i

the order of summation, allowing us to make use of the unit
L, row norm for X in (6). Simplifying the summations and
noting the use of the row-norm definitions for L and W
finally results in (7).

The useful property of (7) is that “{zml },

1 depends only
the initial combination weights and the row norms of L and
W. We can use this property to pre-normalize by first

defining
h=o+pl{w), | + oL,] +o %
6,=0/% G=diag(5))
B =B{w},| /4 B=diagB) (10)
no=v{Ly) /% 7 -diag@) (11)
5,.=6/)Ll. §=vec(¢§i) (12)

and then using these new quantities in a pre-normalized
Adsorption algorithm.

X -oX pwx | gL 8] (Y

Note that direct use of (13) is exactly the power-iteration
approach to finding the solution (used in [1]) and will give
the same solutions at every iteration as the combination of
(1) and (2): the pre-normalization has the exact same effect,
even though it is only done once, as the interleaved
normalizations. Equation (13), therefore, also is guaranteed
to converge to a stable solution, just as the original
Adsorption algorithm is guaranteed. The advantage is that
we do not need to normalize at each step and, as a result, we
can compute an incomplete set of labels, while still deriving
the benefits of the full label set to limit belief within the set
of labels that are interested in. This slicing directly reduces
the computational costs by the same percentage as the
percentage of dropped labels. Furthermore, with the use of
(13) as the system of equations for which we want a solution,
we can use standard linear-algebra tools, like BiCGStab (for
faster convergence) and Gaussian elimination (for shrinking
our graph matrix). We discuss these algorithms and their
large-graph implementations next.

IV. MAP-REDUCE FORMULATION OF STABILIZED BI-
CONJUGATE GRADIENT DESCENT (BICGSTAB)

In [1], Baluja et al. implicitly use power iteration to solve
their system of constraints. For symmetric systems of
constraints, gradient-descent methods can find solutions in
fewer iterations, for any given level of accuracy (as
measured by the average residual error). However, due to
the pre-normalization of Adsorption, we no longer have a
symmetric matrix, and must move to bi-conjugate gradient
approaches. Since the most direct generalization (biconjugate
gradient descent) is not numerically stable, we focus on
stabilized biconjugate gradient descent [7], which has been
shown to converge more uniformly than power iteration,
without the numerical issues (not-stablized) bi-conjugate
gradient descent. We ran several simulations using power
iteration and BiCGStab, based on random graph matrices
with the same level of regularization as we expect to see
through the abandonment variable in our true graphs. In
these tests, when the graph matrix and the beginning label
estimates were non-sparse, on average, BiCGStab converged
to the correct solution 12 times faster than the power-
iteration method (e.g., BiCGStab would converge in two
iterations, requiring only 5 graph-matrix multiplies, while
power iteration would require 60 iterations, needing 60
graph-matrix multiplies to converge to the same level of
accuracy).

When the graph matrix and the beginning label estimates
were sparse, there were similar differences in the rate of
convergence, away from the “wavefront boundary”. We use
the term wavefront to emphasize that (for both power
iteration and BiCGStab), updates are done in such a way that
non-zero values propagate through the graph according to
the neighborhood connections. When the labels are sparsely
injected, non-zero values move in a “wave”, outward from
non-zero areas into areas that were zero (due to sparseness).
Both power iteration and BiCGStab rely on the graph matrix
to determine the label-estimate update, so both have their
non-zero wavefronts progress in the same way.

Due to the size of the graph over which we will be
operating, we implemented BiCGStab using three
MapReduce [8] stages per iteration. Using the notation from
the Wikipedia article on BiCGStab [9], we have a distinct set
of vectors for each of the labels on which we want to
estimate the final distribution. We arrive at the BiCGStab
components A and b (at least conceptually) by separating

fé into columns corresponding tob, by separating X into
columns corresponding to x, and by using

A=1-G-pW (14)

We select an initial shadow direction Ty for each column
aligned with its first-pass residual vector, r,. Note that

computing the first-pass residual vector takes one
MapReduce to compute , =b— Ax,. (For our applications,

bitself is often a good initial estimate for x.) It is this
separate estimation of each column (where each column
corresponds to a single label) that makes label slicing so
simple and powerful in combination with BiCGStab.

Unlike [9], we mark all our auxiliary variables with the
iteration on which they were computed, since this makes our
Reduce processing more uniform and reliable: therefore, we
use ¢, s, and ¢, here (instead of their un-versioned form

from [9]). To allow the remaining framework to operate
smoothly, starting from the initialization (the 0’th pass), we
also use the settings for our auxiliary variables that are
suggested in [9], namely: p, =a=w, =1 and v, = p,=0-

For all iterations after this initialization, there are 3
MapReduce stages: (4) updating the search direction and its
projection through A ; (B) updating the shadow direction and
its projection through A; and (C) combining the computed
components to give a new state estimate and residual.

For all three MapReduce stages, the reduce processing is
the same: from the set of inputs computed in the Map stage,
as well as the inputs passed directly through to the Reducer
from previous stages or iterations, keep and combine the
results for each variable (auxiliary variables, residual, and
state estimate) that is marked with the highest iteration
number observed for that variable, and throw away earlier
versions.

A. Updating the search direction and its projection

1) Map (shared) context:
a. From initial selection: 7o
b. From previous iteration:
Py Ay @y Ly Yoy E
c. From pre-map computation:
P = <£0’£n—l>
P, =r+ () (=), ~o.om,n)
2) Map computation:
For each rowin A, compute {77 }; = {é}l D,

n-1

B. Updating the shadow direction and its projection
1) Map (shared) context:

a. From initial selection: 7o
b. From previous iteration: r,_,
From previous stage of current iteration:
P 1,
d. From pre-map computation:

a, = pn/<£0’gn>
S, =t —-amn,
2) Map computation:
For each row in A, compute {1,},={A} s,

C. Combining components for residual and state estimates

1) Map (shared) context:
a. From previous iteration: x,_,
b. From previous stages of current iteration:
a, s Sn» zn ’ E n

2) Map computation: For each label, compute

@, ={8,.t,)/{tu1,)

X, =X, +a,p +0,s,

r,=s8,— wntn

V. MAPREDUCE FORMULATION OF GAUSSIAN
ELIMINATION

Label slicing allows us to compute our distributions on
the subset of labels that are of most interest, while still
benefiting from the constraints effectively imposed by the
full label set. In a similar way, Gaussian elimination allows
us to compute our distribution on a subset of nodes
(domains), while still benefiting from the indirect
interconnections that are formed through the nodes that we
do not want to explicitly include in our calculation. The
computational savings provided by Gaussian elimination is
linear with the percentage reduction in the number of graph
connections. In addition, Gaussian elimination can speed up
convergence, by effectively increasing the wavefront-
propagation speed through those parts of the graph that were
originally connected via the eliminated nodes.

Gaussian elimination is much simpler to implement in
the MapReduce framework than BiCGStab, requiring only a
single stage and capable of handling elimination of multiple
nodes per run. The Reduce processing in the MapReduce is
a straight pass-through of the outputs from the map stage.

To make the description more concise, define

R . nodes
Aoy = {é}’* I;kcep - {Zé}’ ! E{ to be kept }

~ nodes to be
A ={A L =3vL j &
==remove {=}f* =L remove {)=/=}f* / { eliminated }

Using this notation, the map processing is
1) Map (shared) context:
From stored representation:

> L

=remove
==remove

2) Map computation: For each row, i, in A, and L,
=keep

=keep

a) Initialize

o=A A A
Sheep Skeep® Zremove Zremove
L =L , L =L,
=—keep =—keep =remove ==remove
b) Compute the pivot strength, =, , for each

JjE {nodes to be eliminated} :

”ij = {ékeeﬂ }[j /{émmwe }U

and select the elimination node, j, with the smallest
amplitude |ﬂ,-,-|
c) Eliminate all non-zero entries in the j ’th column in

{ A } and A, with matched operations on {iy }
Skeep [=remove =—keep)
and §

LV

==remove

{ékeep },-k = {ékew }ik 7 {é””“”“ }71\'

{L } -~ {L } - {L }
v v ij v -
=—=keep J i =keep) j. ==remove J jk

(B by Ad) 7o), Ve

{L } <~ {L } -7 - {L } Vn=j
Y Y nj Y ~
==remove J ni ==remove } pk ==remove J jk

with %y ={4 e} /B e},

d) Removerow j from A, f
=remove
==remove

e) Repeat (b), (c), and (d), until there are no more rows
(nodes) to be removed.

) Output {§ 1 and{ir }

=—keep

VI. LARGE-SCALE DOMAIN-LEVEL TOPIC LABELING

Baluja et al. [1] already showed the usefulness of the
Adsorption approach in video recommendations. The pre-
normalized Adsorption algorithm provides identical results
at a fraction of the computational cost using the new
formulation with label slicing, Gaussian elimination, and
BiCGStab. The final computational cost is reduced by the
product of the savings of all three approaches (label slicing,
BiCGStab and Gaussian elimination).

For this paper, we explored using pre-normalized
Adsorption for topic labeling on web domains, for search
and advertising. Many page urls, and even whole domains,
are poorly classified by standard topic-analysis approaches,
due to having little in the way of machine-understandable
content to classify. A standard example of this problem are
domains that primarily host images or video — while the page
url can be examined for clues to the topic, as well as the
linked-to urls, the results are impoverished and noisy. If we
can improve the topic labeling, we could more accurately
index these pages for search and for content-matched
advertisement.

Specifically, we created a graph with domains as nodes
and a measure of shared searches for cross-domain pairs of
urls as weighted connections between nodes. Our measure
looked at, for each search term, the click rates for each url
served in the results and set the strength of the url-url-term
triple to the lower of the click rates between the paired urls.
The connection weight between pairs of urls is the sum over
all triples that terminate at those two urls. To aggregate from
url-pair connections, up to domain-pair connections, we sum
across those url-pair connections where the first of the pair of
urls is from the first domain and the second is from the
second domain. Similarly, our injection labeling is based on
combining topic analysis of the urls within the domain,
dropping those topics that were based on keywords that
showed too much within-domain variance in their strength.
We aggregate the link and topic-label strength up to the
domain level to improve coverage and reliability of our
graph connections. Even with this aggregation of urls to
domain-level nodes and filtering of keyword labels to
within-domain-stable sets, our initial data provides a graph
of about 13 million domains (nodes), with about 4 billion
node-to-node connections based on analysis of more than
253 million search terms. Our topic analysis provides more
than 4,500 general topics, using traditional text-based
classification.

From this set of 4,500 topics, we focused on 71
commercial topics (see Fig. 1 for examples). The
computational savings (over the original Adsorption
approach) for the label slicing alone was a factor of 63 times.
We do not include this savings in the remainder of this
discussion, since it is available to both power iteration and
BiCGstab, as long as we are using the pre-normalized
Adsorption formulation. That said, it is the most significant
source of computational savings, compared to the original
work [1].

We ran this set of 71 labels through two iterations of
BiCGStab (5 graph-matrix multiplies) and through 70
iterations of the power method, both starting from the same
initial estimate. Fig. 2 shows the size of the per-node
residual for BiCGStab on these labels (using an L; norm).
As with our small-scale simulations, at the end of our second
iteration, the not-insignificant residuals occurred at the 3% of
the nodes that were at the “wavefront boundary” of one or
more of the topic labels. This level of convergence, with just
5 matrix multiplies, is not seen in the power-iteration

. Clothing
o Women’s, Men’s, Children’s
o Athletic, Casual, Formal, Outerwear, Sleepwear
o Shoes, Boots
. Accessories
o Jewelry, Watches, Purses
. Toys
o Building Toys, Dolls, Stuffed Animals, Ride-on Toys
. Gifts
o Flowers, Cards, Party Items, Holiday Items
. Discounts
o Coupons, Loyalty Cards

Figure 1: Examples from selected 71 commercial topics.

Cumulative distribution (%)

iteration 0
iteration 1 e
iteration 2

90 i 1 1
0 0.02 0.04 0.06 0.08 0.1
Residual amplitude

Figure 2: Cumulative residual distribution (by iteration).

solution until the 62" iteration (an additional savings of
nearly 12.5 times).

Since the goal of our label propagation is to increase the
richness and extent of the topic labeling on poorly labeled (or
unlabeled) domains without over-extending into domains
that are not related to our commercial subset, it is helpful to
look at the statistics summarized in Fig. 3 through 5.

Fig. 3 gives a measure of the richness of our labels on
commercial domains and how that richness increases as a
function of iteration. The plot shows the percentages of
domains by how many commercial-topic labels are seen on
that domain. If a domain is commercial, the more
commercial labels that are associated with the domain, the
richer the topic description. As shown by the plots, our
injection labels (those given by topic analysis) within each
domain provides sparse topic labels, with the largest
percentage of commercial domains having only one label.

Distribution of number of labels on each domain (by iteration)
2 T T T

iteration 0 (8.8% domains) e
iteration 1 (11.8% domains) ===
iteration 2 (11.9% domains) ===

Percent of domains at each label count

i

0 10 20 30 40 50 60
Number of commercial labels associated with single domain

Figure 3: Node-level coherence of commercial labels.

Since our 71 commercial topics are actually a hierarchical
set, this sparseness is unlikely to be correct for most
domains. By the end of the second iteration, the mode of
that distribution has moved to around 30 topic labels per
commercial domain.

Also, the legend in Fig. 3 gives us the information
needed to check that we are not just expanding the support of
our commercial-topic labels indiscriminately across the full
domain graph. The first iteration extends the support of the
commercial labels by a third, from just under 9% of all
domains to just under 12%, suggesting the addition of a
subset of the unlabeled domains within the graph. After the
first iteration, the support of the commercial-label set is
effectively unchanged. This can be traced back to the effect
of pre-normalizing on the full set of topic labels. Even
though the non-commercial topics are not being explicitly
computed in our iterations, they still have an effect, keeping
the commercial labels from spreading onto distant (in the
graph-connection sense) domains, as they otherwise would
as the commercial wavefront progressed. This highlights
both one of the main advantages of the original Adsorption
as well as the most compelling advantage of the pre-
normalized Adsorption. With the original Adsorption, each
node has a limited capacity for supporting labels, thereby
limiting propagation — but enforcing that limited capacity
forced computation of all label distributions, not just the
labels of interest. With pre-normalized Adsorption, there is
still the per-node limited capacity for supporting labels, but
we achieve that capacity limit by pre-normalizing, freeing us
to compute only at that subset of labels that we are interested
in, without having those labels spread unchecked.

Up to now, our analysis of our results has focused on the
richness and extent of our commercial labels but not on the
likely quality of the mix of labels that we are introducing
onto commercial nodes. Since our topics are structured into
a hierarchical framework, intuitively what we would like is
to have each commercial site labeled mostly by closely
related subsets of the available topics. We can use dendrite
distances between the labels to capture this sense of
closeness among the sets of labels associated with each
domain node. As with standard dendrite measures, for each
pair of labels on a domain, we count the number of
hierarchical topic links that we have to go across in order to
travel from one topic label to the other. We lengthen that
distance by one for each generation that both labels have to
travel back through, in order to penalize siblings more than
grandparent-grandchild relations. As an example, if we need
to calculate the distance between women’s jewelry and
men’s clothing and we have the two tree branches “Jewelry -
> Women’s Accessories -> Apparel” and “Men’s Clothing -
> Apparel”, our dendrite distance measure would be 4: two
(for “Women’s Jewelry” to “Apparel”) plus one (for “Men’s
Clothing” to “Apparel”) plus one (for the one generation
removal from direct descendent connection).

As a way to evaluate our label distributions on domains
with 2 to 6 labels, we computed all pairwise dendrite
distances within each domain and averaged them (again, on
a per-domain basis). Due to the use of the topic hierarchy in
our dendrite-distance measure, smaller distances amongst the

labels on a single domain correspond to more believable
topic mixes. Fig. 4 shows our results, as function of
iteration. When the initial topic labeling provides more than
one label, it includes many dissimilar labels, with the mode
of the dendrite average distance being up between 6 and 7.
Our propagation reduces that average distance, filling in
parent and children nodes, to give a mode that is just above
one. While parents could always be filled in by knowing the
hierarchical structure of our topic labels, the propagation
graph is doing this without that knowledge — it is finding
these associations purely through propagation of neighbor
labels. (Furthermore, we could not use the tree-structure
meta-information to fill in the correct children labels — if we
blindly used the tree structure, we would get numerous
nearby but irrelevant labels.) For this set of nodes, we are
enriching the topic description without introducing unrelated
labels. This measure of quality is a stringent one, since at no
point do we use the dendrite structure to limit our
propagation.

Fig. 5 shows a similar measure, for domains with more
than 6 labels, again averaging the dendrite distances within
each node. We did this separation between Fig. 4, for
domains with 2-6 commercial labels, and Fig. 5, for domains
with more than 6 commercial labels, since the dendrite
distances across larger sets of labels, taken from the same
hierarchy will have a larger minimum-average distance than
will smaller sets of labels. For small sets, you can often find
2-6 labels, with all parent-child or sibling relationships with
one another but, for large sets of labels, this is not possible
and first and second cousin relationships become a major
part of even the most compact set of labels. Same as with
Fig. 4, Fig. 5 shows that the average dendrite distance
decreases with each iteration, even on nodes with more than
6 labels. Since closely related sets of topic labels are more
likely to be a full and accurate description of the domain
topic, our topic labeling seems to be improved by our graph

Distribution of dendrite distances
60

iteration 0
iteration 1

for domains with 2-6 labels
. iteration 2

w

(=}
T
i

N
(=]
T

20

Percentage of labeled domains

0 2 4 6 8 10 12
Average of dendrite distances within domain

Figure 4: Dendrite topic-label distance on domains with 2-6 labels
(by iteration).

Distribution of dendrite distances for domains

“ [with more than 6 labels :

iteration 0
iteration 1
...... iteration2 7.

35 b e -

Percentage of labeled domains

0 2 4 6 8 10 12
Average of dendrite distances within domain

Figure 5: Dendrite topic-label distance on domains
with more than 6 labels (by iteration).

propagation work.

All of the measurements conducted on the propagation of
web labels on this large set of domains indicate an
improvement in search indexing and content-matched
advertising. In the future, we will expand these experiments
in two directions. First, we will run live trials, with full user-
facing experiments, to determine the quality improvement in
the user experience. Second, we will increase our graph size
and specificity by including individual urls, for those sites
that have enough textual information to support that level of
analysis.

VII. CONCLUSIONS

This paper improves the computational efficiency of
Adsorption, a graph-based labeling approach that has already
been shown to be highly effective. We do so by replacing
propagation-interleaved normalization with pre-
normalization, without changing the results provided by
Adsorption. Specifically, if the power-method approach to
finding a solution is used, as it was with Adsorption, the
answers at every iteration will be exactly the same using
either the original or the pre-normalized Adsorption. The
advantage of the pre-normalized Adsorption is
computational efficiency in determining the label
distribution. With the pre-normalized version, we can use
label slicing, to compute only those labels that are of direct

interest, without losing the beneficial belief-limiting
characteristics of the full label set. Label slicing reduces the
computational cost linearly with the percentage of dropped
labels. Similarly, we can use Gaussian elimination, to
compute the labels only on those nodes that are of direct
interest, without losing the effects of the connections that
occur indirectly through currently not-of-interest nodes.
Finally, we can speed up convergence to the steady-state
solution by a factor of 12 (in numbers of graph matrix
multiples), by using stabilized biconjugate gradient descent,
instead of power iteration. We also applied pre-normalized
Adsorption to a new, large-scale application area, topic
labeling on web domains, with promising results.

REFERENCES

[1]1 S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S.
Kumar, D. Ravichandran, and M. Aly, “Video suggestion and
discovery for YouTube: taking random walks through the
view graph,” Proc. International Conference on World Wide
Web, ACM, April 2008, pp. 895-904.

[2] X. Zhu and Z. Ghahramani, “Learning from labeled and
unlabeled data with label propagation,” CMU tech report,
CMU-CALD-02-107, 2002.

[3] P.P. Talukdar, J. Reisinger, M. Pasca, D. Ravichandran, R.
Bhagat, and F. Pereira, “Weakly-supervised acquisition of
labeled class instances using graph random walks,” Proc.
Conf. on Empirical Methods in Natural Language Processing,
Assoc. Computational Linguistics, October 2008, pp. 582-
590.

[4] Y. Jing and S. Baluja, “Visual Rank: applying Page Rank to
large-scale image search,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 30, November 2008, pp. 1877-
1890.

[51 J.Liu, W. Lai, X S. Hua, Y. Huang, and S. Li, “Video search
re-ranking via multi-graph propagation,” Proc. International
Conference on Multimedia, ACM, September 2007, pp. 208-
217.

[6] M. Speriosu, N. Sudan, S. Upadhyay, and J. Baldridge,
“Twitter polarity classification with label propagation over
lexical links and the follower graph,” Proc. Workshop on
Unsupervised Learning in NLP, Assoc. Computational
Linguistics, July 2011, pp. 53-63.

[71 H. A. Van der Vorst, “Bi-CGSTAB: A Fast and Smoothly
Converging Variant of BiCG for the Solution of
Nonsymmetric Linear Systems,” SIAM Journal on Scientive
and Statistical Computing, vol. 13, March 1992, pp. 631-644.

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Symposium on Operating
System Design and Implementation, December 2004, pp. 137-
150.

[9] Wikipedia, “Biconjugate Gradient Stablized Method,”
http://en.wikipedia.org/wiki/Biconjugate _gradient_stabilized
method [retrieved February, 2013].

