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AbstractÐA local image transform based on cumulative similarity measures is

defined and is shown to enable efficient correspondence and tracking near

occluding boundaries. Unlike traditional methods, this transform allows

correspondences to be found when the only contrast present is the occluding

boundary itself and when the sign of contrast along the boundary is possibly

reversed. The transform is based on the idea of a cumulative similarity measure

which characterizes the shape of local image homogeneity; both the value of an

image at a particular point and the shape of the region with locally similar and

connected values is captured. This representation is insensitive to structure

beyond an occluding boundary but is sensitive to the shape of the boundary itself,

which is often an important cue. We show results comparing this method to

traditional least-squares and robust correspondence matching.

Index TermsÐImage correspondence, stereo, motion, contour tracking.

æ

1 INTRODUCTION

FINDING corresponding points in image pairs or image sequences
is a central problem in computer vision. Most classical methods
assume brightness constancy and perform best on high-contrast
regions that lie on a single surface. However, many images have
visually important features that lie on occluding boundaries
between surfaces. If the surfaces themselves are relatively smooth
and low contrast, then the only contrast present will be from the
occlusion edge. Correspondences at these feature points are readily
apparent to human observers, but existing computational techni-
ques fail to find them.

For many detailed image analysis/synthesis tasks, finding

precise correspondences at object boundaries is extremely im-
portant. Image compositing [25], automatic morphing [15], and

video resynthesis [12] all require accurate correspondence and

slight flaws can yield perceptually significant errors. To obtain

good results, prior approaches for these tasks have relied on either

extreme redundancy of measurement, human-assisted tracking,

substantial smoothing, or domain-specific feature-appearance

models.
In this paper, we describe a new method that can find

correspondences when the only contrast is due to an occlusion

event (e.g., the foreground is smooth.) Our method uses purely

local image analysis, without prior training, and without smooth-
ing or pooling of motion estimates. We define an image transform

which characterizes the local structure of an image in a manner

insensitive to points in an occluded region, but which is sensitive

to the shape of the occlusion boundary itself. In essence, our

method performs matching on a redundant, local representation of

image homogeneity. In this paper, we show examples where color

is the attribute analyzed for homogeneity, but our method is
applicable to other local image characteristics such as texture,

range data, or achromatic image intensity.

2 PREVIOUS WORK

In recent years, several researchers have addressed the problem of
local image analysis in the presence of occlusion. Methods from the
robust estimation literature have been applied to the correspon-
dence problem and have been shown to considerably improve
performance near occlusion boundaries.

Black and Anandan pioneered optic flow using robust error
normsÐthese methods substantially discount the effect of outlier
contamination due to pixels from a nonforeground surface [5].
Shizawa and Mase derived methods for transparent local flow
estimation [30], using an approach which relies on the computation
of higher-order image derivatives. Others have explored nonpara-
metric local transforms for correspondence: Bhat and Nayar have
advocated the use of rank statistics for robust correspondence [4],
while Zabih and Woodfill use ordering statistics combined with
spatial structure in the CENSUS transform [37]. Boykov et al. and
others have explored correspondence methods which can adapt to
use local windows of variable size [26], [24], [11].

However, these methods make a critical assumption: that there
will be sufficient contrast in the foreground portion of an analysis
window to localize the correspondence match. This is often not
true, due either to a uniform foreground surface or low-resolution
video sampling. This problem is illustrated in Fig. 1, which shows
a foreground region with zero contrast in front of two different
background regions. Note that the sign of contrast at the occlusion
boundary changes between the two frames. An example in real
imagery is shown in Fig. 2: The marked locations pose a
considerable challenge for existing robust correspondence meth-
ods, since any window large enough to include substantial
foreground contrast will include a very large percentage of
background pixels.

Most robust and nonrobust correspondence methods fail when
there is no coherent foreground contrast. Transparent-motion
analysis [30], [22], [31], [18] can potentially detect motion in these
difficult cases, but has not been generally able to provide precise
spatial localization of corresponding points (but see [35]). Smooth-
ing methods, such as regularization or parametric motion con-
straints (affine [3], [6], [20] or learned from examples [7]), can
provide approximate localization when good motion estimates are
available in nearby image regions, but this is not always the case. If
a corpus of training images is available, techniques for feature or
appearance modeling can solve these problems, cf. [16], [8].

Several authors have explored methods of finding image layers
to pool motion information over arbitrarily shaped regions of
support and to iteratively refine parameter estimates [17], [2], [33],
but these methods generally assume models of global object
motion to define coherence. Token-level edge correspondence are
another possible solution, but many images are not amenable to
stable, automatic edge extraction. More problematically, edge
analysis discards information about image attribute value on both
sides of an occlusion edge. This is suboptimal since information
from the foreground side can be of value in establishing proper
correspondence. Similarly, if a global region segmentation can be
performed, correspondence at the surface-shape level can be
performed and will solve the problems posed in the previous
figures. But, it has proven difficult to obtain global region
segmentations that are conserved across corresponding pairs
and, even when they are available, the resulting correspondences
are extremely sparse since there are far fewer regions than pixels in
the image.

As we shall show in this paper, a relatively simple local image
transform can easily address the above cases and return pixel-level
image correspondences without a global edge or region segmenta-
tion, or a global motion model. The essential idea is to consider a
transform which captures the local support of the foreground
region, and to then perform matching using these support
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functions. Since we do not know the segmentation a priori, we will

make conservative guesses at the local support shape by assuming

that image regions which are homogeneous in a given attribute

value (say, color) belong to the same surface.

3 RADIAL CUMULATIVE SIMILARITY

Our approach is to define a local image transform with certain

desired properties that make features at the occluding boundaries

of low-contrast surfaces particularly salient. We apply this trans-

form before using traditional neighborhood distance and contour

tracking methods.
Since image contrast determines the ability to find unique

correspondences, we design our transform by considering the

sources of contrast within a local image window that contains an

occlusion boundary. We would like a transform which ignores

contrast from the background surfaces but is sensitive to contrast

from the occluding boundaries and surface markings of the

foreground layer. In general, one does not know a priori whether

contrast within a particular window is entirely within the fore-

ground layer, is due to the occlusion boundary between fore-

ground and background, or is entirely within a background layer.

We define the ªforegroundº to be the scene layer on which the

central point of the window resides; points on all other layers are

considered ªbackground.º Ideally, when contrast is in the fore-
ground layer, a transform would capture it fully, both in
magnitude and sign. When the contrast is due to an occlusion
edge, it is reasonable only to define a template based on the
contrast energy, since the sign of contrast is arbitrary with
changing background. When contrast is in the background layer,
it should be ignored in an ideal template.

We define a robust local image representation that approx-
imates this ideal, without any prior knowledge of the occlusion
location. We capture the contrast energy closest to the center of the
window, and attenuate all else. Our representation is comprised of
a central image-attribute value (typically color) and a local
neighborhood of this attribute. The neighborhood computes the
local contrast relative to the central attribute attenuated to discount
background influence. Many different processes could be used to
attenuate background influence, in this paper, we explore radial
cumulative probability functions. We compute a measure propor-
tional to the cumulative likelihood that the image attribute is
unchanged along the ray from the template center to a particular
neighborhood point.

Formally, given a discrete image function I�x; y�, we compute a
local robust representation comprised of two terms, a central
value, and a neighborhood function:

RI�x; y� � fCI�x; y�; NI�x; y; r; ��g:
The central value is simply the image value averaged within a

small radius of the given image location:

CI�x; y� � 1

�2��Mc�2�
Xr�Mc

r;�

I�x� r cos �; y� r sin ��:

We typically keep the central region small, with radius (Mc) of a
few pixels.

Our neighborhood function is proportional to the likelihood, for
each pixel in the window, that the underlying image attribute is
unchanged along a ray from the center of the window to that pixel.
To compute the neighborhood function, we first compute the local
image-contrast energy, which is simply the MSE between the
central point at which the transform is being defined (x; y) and
nearby points at a given radial offset (r; �):
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Fig. 1. Correspondence is difficult when a uniform surface moves across different
background patterns. Consider the correspondence of window A with windows B
or C. Perceptually, window A is closer to window B than window C. But, traditional
methods will find the distance between windows A and B to be larger than that
between A and C if distance is computed by summing a per-pixel error measure.

Fig. 2. Finding local correspondences is also difficult in regions with changing scene topology. Images (a) and (d) were taken before and after user's expression changes;

(b) and (e) are enlarged views of corresponding points with a cross drawn to indicate the center point of the window. Traditional correspondence methods have difficulty

at points such as these, where there is little foreground texture, substantial occlusion, and variable sign of contrast at the occlusion boundary. The RCS transform is

stable despite occlusion boundaries of different contrast sign. Images (c) and (f) show the RCS transform of the windows in (b) (e). The RCS transform is shown as two

windows, one indicating the neighborhood function, and a smaller one indicating the central attribute value. The computations were performed on color images, which

can be viewed at http://www.ai.mit.edu/~trevor/papers/pami110449/.



EI�x; y; r; �� � �jj�CI�x; y� ÿ I�x� r cos �; y� r sin ���jj2;
where � is a contrast sensitivity coefficient. We then take the

integral of E along a ray from the central point, and take the

negative exponential to obtain our neighborhood function:

NI�x; y; r; �� � expfÿ
Z
�<r

EI�x; y; �; ��dpg:

NI and EI are defined over window coordinates r �Mn and

0 � � � 2�. Mn can be set as a parameter of the system, or

determined automatically as the largest value needed to include all

values of NI above a small threshold.
We call the representation R the Radial Cumulative Similarity

(RCS) transform, since it reflects the radial homogeneity of a given

attribute value at a particular point. The main benefit of the

RCS transform is invariance to sign of contrast at an occluding

boundary as well as invariance to background contrast, while

remaining sensitive to foreground and occluding edge contrast

energy. This can be seen by the similarity of Figs. 2c and 2f; despite

dissimilar background structure and occlusion contrast sign

reversal, the RCS transformed pairs are very similar.
We choose the radial integration step for its mathematical and

conceptual simplicity, but several other neighborhood functions

are possible. In general, one could use any pixel-fill or diffusion

operators which finds a set of locally connected and similar pixels.

These latter methods would have the additional advantage that

they could capture nonconvex local support structure.

4 FINDING POINT CORRESPONDENCES

To find a correspondence result for a point (x; y) in an image I, we

can simply search for the displacement in a second image I0 which

has minimum RCS distance:

�ux; vx� � arg min
u;v�Mw

u;v�ÿMw

D��RI�x; y�;R0I�x� u; y� v��;

where x � �x; y�.
We define RCS distance by computing the weighted L2 error of

the transformed data using a combination of neighborhood

difference and central value difference terms.

D��RI�x; y�;RI0 �x0; y0�� � �1ÿ ���N � ��C:

The neighborhood difference �N is defined as the MSE between

NI�x; y; r; �� and NI0 �x0; y0; r; �� computed over r; �; �C is the MSE

between C and C0.
The bias term � expresses a trade-off between the contribution

of the central attribute error and the neighborhood function error.

Generally, the neighborhood error is the most important, since it

captures the spatial structure at the given point. However, in

certain cases of spatial ambiguity, the central attribute value is

critical for making the correct match unambiguous. For example,

in the image shown in Fig. 2d, the neighborhood component of the

RCS transform would be roughly equal for the marked point and a

point located just below the top lip (centered in the dark region of

the open mouth). A modest value of � disambiguates this case.
However, central attribute information alone is clearly inade-

quate to establish reliable correspondencesÐin the same figure,

many spatially disjoint points may have equal attribute value

(color or hue). Using � � 1 would lead to random correspon-

dences being indicated between all such equal color points. We

have empirically compared the performance under varying

values of the � parameter, and found values between 0:05 � � �
0:25 seem to give the best results. In all of the examples presented

in this paper, we set � � 0:1.

4.1 Anisotropic Regularization

For many image features, the simple matching procedure
described aboveÐwithout any regularization stepÐcan yield good
correspondences. However, to overcome errors due to the aperture
problem and sensor noise, it is often necessary to regularize or
smooth correspondence results. Unfortunately, isotropic smooth-
ing or regularization have negative effects at object boundaries, as
information from multiple object surfaces may be pooled together.
Fortunately, the RCS representation offers a natural way to
overcome this limitation since the neighborhood similarity func-
tion is a natural mask to use in anisotropic smoothing.

The simplest approach is to smooth estimated displacements,
using the neighborhood function as a weight:

�u�x ; v�x � �
1P
WI

Xi;j�Ms

i;j�ÿMs

WI�x; y; i; j��ux0 ; vx0 �;

where x0 � x� �i; j� and WI is the Cartesian sampling of NI,
WI�x; y; i; j� � NI�x; y;

��������������
i2 � j2

p
; atan2�j; i��.

The weighting function removes the influence of outlier points
in the smoothing process. However, taking the spatial average of
estimated displacement is nonrobust when there are multiple
peaks in the displacement distance function. Even with a perfect
weighting mask which discounts all nonforeground points, it can
easily be the case that a particular point in a regular pattern can
match equally well against several locations. It is, of course, subject
to debate how one should represent this and how to choose which
peak(s) to return. But, it is clear that one should not return an
answer that is intermediate between the two peaks, which would
be the result of naively averaging the estimated displacements.

Our preferred method is to instead find the mode of the
smoothed distribution. We integrate the RCS distance over a
spatial smoothing window ÿMs � i; j �Ms, weighted by the
neighborhood map evaluated at the chosen point:

�u�x;v�x� � arg min
u;v�Mw

u;v�ÿMwXi;j�Ms

i;j�ÿMs

WI�x; y; i; j�D��RI�x� i; y� j�;R0I�x� i� u; y� j� v��:

4.2 Validity Test

Correspondence search computed with the RCS transform gen-
erally outperforms traditional methods near the occluding bound-
aries of otherwise smooth (low-texture) objects. However,
RCS-based correspondence may perform worse at interior points,
especially those which are highly textured. This lower perfor-
mance of RCS away from occlusion boundaries is not surprising:
when analyzing an image window of a single surface where
brightness constancy holds and there is no occlusion, suboptimal
performance will result since the RCS neighborhood function does
not capture all the possible contrast in the window. In addition, if
there is high contrast in both spatial directions the neighborhood
function may well be degenerate, reducing to approximately a
single point.

Fortunately, occlusion-free regions of high contrast are cases
where traditional methods perform exceedingly well and it is
straightforward to devise a test for the validity of the RCS-based
result.

We use the results of a search using an L2-norm to determine
the appropriateness of the RCS transform. Failure of L2 to find a
match below a certain residual threshold indicates a point at which
RCS should be used. This hybrid approach is more accurate since,
when an L2 match is valid, it is generally more precise than an RCS
match at the same point. However, it is also more computationally
expensive, as it can require the computation of two full

224 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 2, FEBRUARY 2001



correspondence searches (L2 followed by RCS) per pixel.1 The

threshold is computed empirically by evaluating the minimum

L2 error over regions of the image known to be from a single object;

the threshold is set to be approximately two standard deviations

above the mean of this error.
Fig. 3 shows the results of correspondence search using features

in an image pair. (See caption text.) From the results for the corner

feature, we can see that a distinct minima is visible when using

unsmoothed RCS, L2 distance, isotropic smoothed RCS, and

anisotropic smoothed RCS. This is unsurprising; since this feature

point is not near the boundary of a moving object, the L2 metric or
isotropic smoothing will yield the correct result. However, the
finger-tip feature is near an occluding boundary. We can see the
inferior result provided by the L2 norm in this case, as well as by
an isotropic smoothing. Only the anisotropic smoothed RCS result
offers a distance image which is relatively smooth and whose
minima corresponds to the correct result.

4.3 Contour Tracking Application

The RCS transform can be also be used to track an entire occluding
contour in an image, using dynamic contour models. Tracking
visual features in a series of images is an important task both for
vision-based control and for segmentation applications. Dynamic
contours [27] and related active tracking techniques are well-suited
for both applications because they combine simple, light-weight
object models with rapid updates. Dynamic contours track
boundaries by minimizing the sum of an external force based on

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 2, FEBRUARY 2001 225

Fig. 3. Correspondence search for two example features. Top row shows an image pair. Left column shows two features selected from left image. Images labeled (R, Rn,
Rc, L2, Rs, Ra) show the distance surface of the feature compared to each possible offset in the right image. Images (R, Rn, Rc) are computed using the RCS transform
with no smoothing and varying � to illustrate the trade off between neighborhood and color terms (R, Rc, and Rn use � � 0:1; 1:0; 0:0, respectively). (L2) shows the result
using mean-squared-error distance; result with robust norms were qualitatively similar. (Rs) shows the result using an RCS transform (� � 0:1) and isotropic smoothing.
(Ra) shows the result using the anisotropic smoothing method described in the text. The corner feature is not near an occlusion boundary, so L2 and RCS methods all
have distinct minima at the correct correspondence, and both isotropic and anisotropic smoothing preserve that minima. However, the finger feature is dominated by
contrast due to an occlusion boundary and, thus, L2-based methods and isotropic smoothing approaches fail to find the correct correspondence.

1. If precomputing L2 correspondences is too computationally expen-
sive, another approach would be to test explicitly for degeneracy of the
neighborhood function. Regions that are prone to aliasing can be detected
by checking whether the magnitude of the radial cumulative similarity
function, jjN jj, is below a certain threshold; if so the RCS transform should
not be used.



a local image measure, and an internal force, based on a shape-
dynamics model. A dynamic contour tracks the indicated
boundary by finding the shape that minimizes the combined
external and internal forces. The external force drives the dynamic
contour according to the current image appearance, while the
internal force increases the spatial and temporal continuity of the
tracked boundary.

Dynamic contours usually employ a simple image contrast
measure to define the external forces on the model. This approach
works well as long as the boundary being tracked is not an
occluding boundary, such as that of a silhouette. When the
boundary to be tracked is an occluding boundary, the dynamic
contour often confuses background texture for the desired
boundary.2 To overcome this problem, we use an RCS-based
external energy term for the dynamic contour model. As with
point correspondences, our image model describes the local
contrast energy pattern but is largely insensitive to changes in
background contrast.

Given a dynamic contour model, we can simply associate each
nodal point with an RCS transform value taken directly from the
image pattern at the initial nodal points of the user-drawn contour.
The external force in subsequent frames is then computed

according to the distance between the desired RCS transform

value and the value of the proposed node location. If rotational

invariance is desired, we can formulate a 1D version of the

RCS transform, using a ray from each RCS transform evaluated

along the full length of the dynamic contour. We use rays that are

perpendicular to the local contour orientation. This also avoids the

ambiguities introduced by matching sparse nodal points since the

external force term is determined by the RCS appearance along the

full length of the contour.
We can also define a segmentation mask for the selected object

out of the sequence automatically, using a continuous-valued

alpha-channel sequence created from the contour position and

from the RCS profiles along the contour. (For details of this

method, see [14].) We tested our tracking and segmentation

performance on an image sequence containing a mouth opening

and closing. The mouth sequence shows a low-texture, deformable

occlusion (the inside boundary of the lips), with a similarly colored

background (the teeth, gums, and the opposite lip) moving along a

related but distinct path.
For each of these sequences, the user manually initialized the

contour in the first frame and deformable contour tracking was

performed with both traditional and RCS-based external energy

models. As expected, the edge-based dynamic contour gave poor

matches when confronted with a cluttered background with

changing contrast. The RCS dynamic contours were more success-

ful, and remained attached to the lips throughout the sequence.

Fig. 4 shows these sequences, and the computed segmentation

mask from the RCS result.
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2. To help us disambiguate the contrast edges, of course, we could use
better models of object shape and/or object motion. Much recent work has
improved the shape-dynamics models for dynamic contours and related
techniques [13], [9], [32]. We could also track multiple hypotheses [23] and
use future shape distortions to select the correct tracking sequences. These
approaches require detailed shape and motion models for each object that
we hope to track; they can be applied independently with our method when
appropriate.

Fig. 4. The RCS transform can also aid tracking when using a dynamic contour model, by defining the external energy term using RCS distance measures. The top image
sequence shows the tracking result obtained with a gradient-based external energy term; the second sequence shows the tracking result where RCS-based external
energy was used. The contour was initialized by hand in the first frame, four frames from sequence of 110 are shown here. This sequence is difficult for the gradient-
based method since the lower edge of the upper teeth is similar to the lower edge of the upper lip in the gradient image, using the RCS these are easily distinguished. The
RCS neighborhood function can also be used to define a segmentation mask, as shown in bottom sequence.



5 CONCLUSION

Radial Cumulative Similarity (RCS) is a new image transform that

describes local image homogeneity, comprised of a central

attribute value and a function of the surrounding radial structure.

We compute radial similarity with the cumulative error of an

attribute value relative to the value at the center of an image

window. This representation can be insensitive to structure outside

an occluding boundary, yet model the boundary itself. When used

for correspondence search, it can track foreground surfaces near

occlusions where there is no foreground contrast other than from

the occlusion boundary. Using the local cumulative similarity

function as a weighting measure, anisotropic smoothing reduces

noise in the displacement estimate but does not introduce outlier

contamination. The RCS transform can also serve as the basis for

image measurements in a dynamic contour tracking system. An

external energy term can be defined using the RCS transform

evaluated at nodal points of the contour, as well as along rays

perpendicular to the contour spine. By compositing the neighbor-

hood function in the RCS representation, an accurate continuous

alpha channel corresponding to the foreground/background mask

function can be computed. We believe the RCS transform can be

integrated into many different window-based correspondence

algorithms, and yield improved performance when tracking low-

contrast occluding contours or features.
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