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Abstract This paper describes mass personalization, a framework for combining mass
media with a highly personalized Web-based experience. We introduce four applications for
mass personalization: personalized content layers, ad hoc social communities, real-time
popularity ratings and virtual media library services. Using the ambient audio originating
from a television, the four applications are available with no more effort than simple
television channel surfing. Our audio identification system does not use dedicated
interactive TV hardware and does not compromise the user’s privacy. Feasibility tests of
the proposed applications are provided both with controlled conversational interference and
with “living-room” evaluations.

Keywords Mass personalization . Mass media . Real-time . Television . Audio-finger
printing

1 Introduction

Mass media is the term used to denote, as a class, that section of the media
specifically conceived and designed to reach a very large audience... forming a mass
society with special characteristics, notably atomization or lack of social connections
(en. wikipedia.org).
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These characteristics of mass media contrast sharply with the World Wide Web. Mass-
media channels typically provide limited content to many people; the Web provides vast
amounts of information, most of interest to few. Mass-media channels are typically
consumed in a largely anonymous, passive manner, while the Web provides many
interactive opportunities like chatting, emailing and trading. Our goal is to combine the best
of both worlds: integrating the relaxing and effortless experience of mass-media content
with the interactive and personalized potential of the Web, providing mass personalization.

Upon request, our system tests whether the user’s ambient audio matches a known mass-
media channel. If a match is found the user is provided with services and related content
originating from theWeb. As shown in Fig. 1, our system consists of three distinct components:
a client-side interface, an audio-database server (with mass-media audio statistics), and a
social-application web server. The client-side interface samples and irreversibly compresses
the viewer’s ambient audio to summary statistics. These statistics are streamed from the
viewer’s personal computer to the audio-database server for identification of the background
audio (e.g., ‘Seinfeld’ episode 6,101, minute 3:03). The audio database transmits this
information to the social-application server, which provides personalized and interactive
content back to the viewer. Continuing with the previous example, if friends of the viewer
were watching the same episode of ‘Seinfeld’ at the same time, the social-application server
could automatically create an on-line ad hoc community of these “buddies”. This community
allows members to comment on the broadcast material in real time.

Although we apply our techniques to television, we do not use the visual channel as our
data source. Instead, we use audio for three pragmatic reasons. First, with visual data, the
viewer must either have a TV-tuner card installed in her laptop (which is rare), or have a
camera pointed towards the TV screen (which is cumbersome). In contrast, non-directional
microphones are built into most laptops and shipped with most desktops. Second, audio
recording does not require the careful normalization and calibration needed for video
sources (camera alignment, image registration, etc.). Third, processing audio is less
computational demanding than processing video, due to lower input-data rates. This is
especially important since we process the raw data on the client’s machine (for privacy
reasons), and attempt to keep computation requirements at a minimum.

In the next section, we describe four applications aimed at supplementing televisionmaterial
with personal and social interactions related to the television content. Section 3 describes some

Fig. 1 Flow chart of the mass-
personalization applications
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of the infrastructure required to deploy these applications. The core technology needed for
ambient-sound matching is described in Section 4. We provide quantitative measures of the
robustness and precision of the audio matching component (Section 5.1) as well as the
evaluation of the complete system (Section 5.2). The paper concludes with a discussion on
the scope, limitations, and future extensions of this application area.

2 Personalizing broadcast content: four applications

In this section, we describe four applications to make television more personalized,
interactive and social. These applications are: personalized information layers, ad hoc social
peer communities, real-time popularity ratings, and TV-based bookmarks.

2.1 Personalized information layers

The first application provides information that is complementary to the mass-media channel
(e.g., television or radio) in an effortless manner. As with proactive software agents [11], we
provide additional layers of related information, such as fashion, politics, business, health,
or traveling. For example, while watching a news segment on Tom Cruise, a fashion layer
might provide information on what designer clothes and accessories the presented
celebrities are wearing (see “wH@T’s Layers” in Figs. 2 and 3).

The feasibility of providing the complementary layers of information is related to the
cost of annotating the database of mass-media content and the number of times any given

Fig. 2 An interface showing the
dynamic output of the mass-per-
sonalization applications during a
CNN documentary on actor Tom
Cruise. Personalized information
layers are shown as “wh@t’s h@t
Layers” (top) and as sponsored
links (right-side middle). Ad-hoc
chat is shown under “ChaT.V.”
(left-side middle). Real-time pop-
ularity ratings are presented as
line graphs (left top) and Video
bookmarks are under “My Video
Library” (bottom). The material
that is presented to the viewer is
driven both by the broadcast
program to which she is listening
(as determined by the ambient
audio identification) and by an
interest profile she might provide
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piece of content is retransmitted. We evaluated how often content is retransmitted for the
ground-truth data used in Section 5 and found that up to 50% (for CNN Headlines) of the
content was retransmitted within 4 days, with higher rates expected for longer time
windows. Thus, if ‘Seinfeld’ is annotated once, years of reruns would benefit from relevant
information layers. Interestingly, a channel like MTV (VH-1), where content is often
repeated, has internally introduced the concept of pop-ups that accompany music clips and
provide additional entertaining information. The concept of complementary information has
passed the feasibility test, at least in the music–video domain.

In textual searches, complementary information providing relevant products and services
is often associated via a bidding process (e.g., sponsored links on Web search sites such as
Google.com). A similar procedure could be adapted to mass-personalization applications.
Thus, content providers or advertisers might bid for specific television segments. For
example, local theaters or DVD rental stores might bid on audio from a movie trailer (see
“Sponsored Links” in the center right panels of Figs. 2 and 3).

In many mass-media channels, textual information (closed captioning) accompanies the
audio stream. In these cases, the closed captions provide keywords useful for searching for

Fig. 3 As the documentary pro-
gresses, the information on the
dynamic webpage is automatical-
ly updated. The Personalized in-
formation layers and the
sponsored links now show new
custom tailored content. Addi-
tional chat comments are deliv-
ered in real time and the current
show’s popularity ratings are
continuously revised
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related material. The search results can be combined with a viewer’s personal profile and
preferences (ZIP code and ‘fashion’) in order to display a web-page with content
automatically obtained from web-pages or advertisement repositories using the extracted
keywords. A method for implementing this process was described by Henzinger et al. [5].

In the output of our prototype system, shown in the top right panels of Figs. 2 and 3, we
hand labeled the content indices corresponding to an hour of footage that was taped and
replayed. This annotation provided short summaries and associated URLs for the fashion
preferences of celebrities appearing on the TV screen during each 5-s segment. While we
did this summarization manually within our experiment, automatic summarization
technologies [8] could be used to facilitate this process and bidding techniques could be
used in a production system to provide related ads.

2.2 Ad-hoc peer communities

As evidenced by the popularity of message boards relating to TV shows and current events,
people often want to comment on the content of mass-media broadcasts. However, it is
difficult to know with whom to chat during the actual broadcast. The second application
provides a real time venue for commentary, an ad hoc social community.

This ad hoc community includes viewers watching the same show on TV. We create this
community from the set of viewers whose audio statistics matched the same content in our
audio database. These viewers are automatically linked by the social-application server.
Thus, a viewer who is watching the latest CNN headlines can chat, comment on, or read
other people’s responses to the ongoing broadcast. The group members can be further
constrained to contain only people in the viewer’s social network (i.e., on-line friend
community) or to contain established experts on the topic.

Importantly, as the viewer’s television context changes (by changing channels) a re-
sampling of the ambient audio can guarantee that the relevant community is automatically
updated as well. The viewer need never indicate what program is being watched; this is
particularly helpful for the viewer who changes channels often, and is not aware of which
show or channel she is currently watching.

This service provides a commenting medium (chat room, message board, wiki page or
video link) where responses of other viewers that are currently watching the same channel
can be shared (see “ChaT.V.” in the center left panels of Figs. 2 and 3). While the
Personalized Information Layers allow only limited response from the viewer and are
effectively scripted prior to broadcast according to annotations or auction results, the
content presented within the peer community application is created by ongoing
collaborative (or combative) community responses.

As an extension, these chat sessions also have an interesting intersection with
Personalized Information Layers. Program-specific chat sessions can be replayed
synchronously with the program during reruns of that content, giving the viewer of this
later showing access to the comments of previous viewers, with the correct timing relative
to the program content. Additionally, these chat sessions are automatically synchronized
even when the viewer pauses, rewinds or fast-forwards the program.

To enable this application, the social-application server simply maintains a list of
viewers currently ‘listening to’ similar audio, with further restrictions as indicated by the
viewer’s personal preferences. Alternately, these personalized chat rooms can self assemble
by matching viewers with shared historical viewing preferences (e.g., daily viewings of
‘Star Trek’), as is commonly done in “collaborative filtering” applications [10].
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2.3 Real-time popularity ratings

Popularity ratings of broadcasting events are of interest to viewers, broadcasters, and
advertisers. These needs are partially filled by measurement systems like the Nielsen
ratings. However, these ratings require dedicated hardware installation and tedious
cooperation from the participating individuals. The third application is aimed at providing
ratings information (similar to Nielsen’s systems) but with low latency, easy adoption, and
for presentation to the viewers as well as the content providers. For example, a viewer can
instantaneously be provided with a real time popularity rating of which channels are being
watched by her social network or alternatively by people with similar demographics (see
ratings graphs in top left panels of Figs. 2 and 3).

Given the matching system described to this point, the popularity ratings are easily
derived by simply maintaining counters on each of the shows being monitored. The
counters can be intersected with demographic group data or geographic group data.

Having real-time, fine-grain ratings is often more valuable than ratings achieved by the
Nielsen system. Real-time ratings can be used by viewers to “see what’s hot” while it is still
ongoing (for example, by noticing an increased rating during the 2004 Super Bowl half-
time). They can be used by advertisers and content providers to dynamically adjust what
material is being shown to respond to drops in viewership. This is especially true for ads:
the unit length is short and unpopular ads are easily replaced by other versions from the
same campaign, in response to viewer rating levels [3].

2.4 Video “bookmarks”

Television broadcasters, such as CBS and NBC, are starting to allow content to be (re-)
viewed on demand, for a fee, over other channels (e.g., iPoD video downloads or video
streaming), allowing viewers to create personalized libraries of their favorite broadcast
content [9]. The fourth application provides a low-effort way to create these video libraries.

When a viewer sees a segment of interest on TV, she simply presses a button on her
client machine, to “bookmark” that point in that broadcast. The program identity and
temporal index into that content can be saved using Synchronized Multimedia Integration
Language (SMIL) [1]. Using the SMIL format has the advantage of being standardized
across many platforms, allowing for freer distribution without compromising the rights of
the copyright owners.

The program identity can be indicated using a pointer to the redistribution service the
content owner requests. Alternatively, due to its compact representation, the actual
identifying fingerprint could be written directly into the SMIL file. This SMIL-encoded
bookmark can either be used to retrieve the entire program, a segment of the program as
determined by the content owner (for example from the beginning of a scene or news-
story), or simply the exact portion of the program from which the fingerprint was created.
As with other bookmarks, the reference can then easily be shared with friends or saved for
future personal retrieval.

Figure 2 shows an example of the selection interface under “My Video Library” at the
bottom of the second screen shot. The red “record” button adds the current program episode
to her favorites-library. Two video bookmarks are shown as green “play” buttons, with the
program name and record date attached.

As an added benefit, the start time for the bookmarked data can be adjusted to allow for
the delay inherent in the viewer’s reaction time. If the “record” button was pressed a minute
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or so after the start of a new segment, the content owner can provide index for the start of
the segment as the “in” edit point saved in the SMIL file, with the exact time at which the
viewer pressed the record button being saved as the first “seek point” (in case that really
was the time she wanted).

The program material associated with the bookmarks can be viewed-on-demand through
a Web-based streaming application, among other access methods, according to the policies
set by the content owner. Depending on these policies, the streaming service can provide
free single-viewing playback, collect payments as the agent for the content owners, or insert
advertisements that would provide payment to the content owners.

3 Supporting infrastructure

The four applications described in the previous section share the same client-side and
audio-database components and differ only in what information is collected and presented
by the social-application server. We describe these common components in this section. We
also provide a brief description of how these were implemented in our test setup.

3.1 Client-interface setup

The client-side setup uses a laptop (or desktop) to (1) sample the ambient audio, (2)
irreversibly convert short segments of that audio into distinctive and robust summary
statistics, and (3) transmit these summary statistics in real-time to the audio database server.

We used a version of the audio-fingerprinting software created by Ke et al. [7] to provide
these conversions. The transmitted audio statistics also include a unique identifier for the
client machine to ensure that the correct content-to-client mapping is made by the social-
application server. The client software continually records 5-s audio segments and converts
each snippet to 415 frames of 32-bit descriptors, according to the method described in
Section 4. The descriptors, not the audio itself, are sent to the audio server. By sending only
summary statistics, the viewer’s acoustic privacy is maintained, since the highly
compressive many-to-one mapping from audio to statistics is not invertible.

Although a variety of setups are possible, for our experiments, we used anApple iBook laptop
as the client computer and its built-in microphone for sampling the viewer’s ambient audio.

3.2 Audio-database server setup

The audio-database server accepts audio statistics (associated with the client id) and
compares those received “fingerprints” to its database of recent broadcast media. It then
sends the best-match information, along with a match confidence and the client id, to the
social-application server.

In order to perform its function, the audio-database server must have access to a database
of broadcast audio data. However, the actual audio stream does not need to be stored.
Instead, only the compressed representations (32-bit descriptors) are saved. This allows as
much as a year of broadcast fingerprints to be stored in 11 GB of memory, uncompressed,
or (due to the redundant temporal structure) in about 1 GB of memory with compression.

The audio database was implemented on a single-processor, 3.4 GHz Pentium 4workstation,
with 3 GB of memory. The audio-database server received a query from the viewer every 5 s. As
will be described in Section 4, each 5-s query was independently matched against the database.
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3.3 Social-application server setup

The final component is the social-application server. The social-application server accepts
web-browser connections (associated with client computers). Using the content-match
results provided by the audio-database server, the social-application server collects
personalized content for each viewer and presents that content using an open web browser
on the client machine. This personalized content can include the material presented earlier:
ads, information layers, popularity information, video “book marking” capabilities, and
links to broadcast-related chat rooms and ad-hoc social communities.

For simplicity, in our experiments, the social-application server was set up on the same
workstation as the audio-database server. The social-application server receives the viewer/
content-index matching information, with the confidence score, originating from the audio-
database server. The social-application server also maintains client-session-specific state
information, such as:

1. The current and previous match values and their confidence
2. A viewer preference profile (if available)
3. Recently presented chat messages (to provide conversational context)
4. Previously viewed content (to avoid repetition)

With this information, it dynamically creates web pages for each client session, which include
the personalized information derived from the viewer profile and her audio-match content.

4 Audio fingerprinting

The main challenge for our system is to accurately match an audio query to a large database
of audio snippets, in real-time and with low latency. High accuracy requires discriminative
audio representations that are resistant to the distortions introduced by compression,
broadcasting and client recording. This paper adapts the music-identification system
proposed by Ke et al. [7] to handle TV audio data and queries. Other audio identification
systems are also applicable (e.g., [13]) but the system by Ke et al. [7] has the advantage of
being compact, efficient, and non-proprietary (allowing reproduction of results).

The audio-identification system starts by decomposing each query snippet (e.g., 5-s of
recorded audio) into overlapping frames spaced roughly 12 ms apart. Each frame is
converted into a highly discriminative 32-bit descriptor, specifically trained to overcome
typical audio noise and distortion. These identifying statistics are sent to a server, where
they are matched to a database of statistics taken from mass-media clips. The returned hits
define the candidate list from the database. These candidates are evaluated using a first-
order hidden Markov model, which provides high scores to candidate sequences that are
temporally consistent with the query snippet. If the consistency score is sufficiently high,
the database snippet is returned as a match. The next two subsections provide a description
of the main components of the method.

4.1 Hashing descriptors

Ke et al. [7] used a powerful machine learning technique, called boosting, to find highly
discriminative, compact statistics for audio. Their procedure trained on labeled pairs of
positive examples (where q and x are noisy versions of the same audio) and negative
examples (q and x are from different audio). During this training phase, boosting uses the
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labeled pairs to select a combination of 32 filters and thresholds that jointly create a highly
discriminative statistic. The filters localize changes in the spectrogram magnitude, using
first- and second-order differences across time and frequency (see Fig. 4). One benefit of
using these simple difference filters is that they can be calculated efficiently using the
integral image technique suggested by Viola and Jones [14].

The outputs of these filters are thresholded, giving a single bit per filter at each audio
frame. These 32 threshold results form the only transmitted description of that frame of audio.
This sparseness in encoding ensures the privacy of the viewer to unauthorized eavesdropping.

The 32-bit descriptor itself is then used as a key for direct hashing. The boosting
procedure generates a descriptor that is a well-balanced hash function. Retrieval rates are
further improved by querying not only the query descriptor itself, but also a small set of
similar descriptors (up to a hamming distance of two). Since the 32-bit output statistics are
robust to the audio distortions in the training data, positive examples (matching frames)
have small hamming distances (distance measuring differing number of bits) and negative
examples (mismatched frames) have large hamming distances.

4.2 Within-query consistency

Once the query frames are individually matched to the audio database, using the efficient
hashing procedure, the potential matches are validated. Simply counting the number of

Fig. 4 Audio (a) is converted
into a spectrogram (b). The
spectrogram frames (c) are pro-
cessed by 32 contrast filters and
thresholded to produce a 32-bit
descriptor (d). Contrast filters
subtract neighboring rectangular
spectrogram regions (whitere-
gions – blackregions), and can be
calculated using the integral-im-
age technique. Also see Ke et al.:
http://www.cs.cmu.edu/~yke/
musicretrieval

Multimed Tools Appl (2008) 36:115–132 123

http://www.cs.cmu.edu/~yke/musicretrieval
http://www.cs.cmu.edu/~yke/musicretrieval


frame matches is inadequate, since a database snippet might have many frames matched to
the query snippet but with completely wrong temporal structure.

To insure temporal consistency, each hit is viewed as support for a match at a specific query-
to-database offset. For example, if the eighth descriptor (q8) in the 5-s, 415-frame-long
‘Seinfeld’ query snippet, q, hits the 1,008th database descriptor (x1,008), this supports a
candidate match between the 5-s query and frames 1,001 through 1,415 in the database.
Other matches mapping qn to x1,000+n (1≤n≤415) would support this same candidate match.

In addition to temporal consistency, we need to account for frames when conversations
temporarily drown out the ambient audio. We use the model of interference from [7]: that
is, as an exclusive switch between ambient audio and interfering sounds. For each query
frame i, there is a hidden variable, yi: if yi=0, the ith frame of the query is modeled as
interference only; if yi=1, the ith frame is modeled as from clean ambient audio. Taking this
extreme view (pure ambient or pure interference) is justified by the extremely low precision
with which each audio frame is represented (32 bits) and is softened by providing additional
bit-flip probabilities for each of the 32 positions of the frame vector under each of the two
hypotheses (yi= 0 and yi=1). Finally, the frame transitions between ambient-only and
interference-only states are treated as a hidden first-order Markov process, with transition
probabilities derived from training data. We re-used the 66-parameter probability model
given by Ke et al. [7].

In summary, the final model of the match probability between a query vector, q, and an
ambient-database vector with an offset of N frames, xN, is:

P q xN
��� � ¼ Y415

n¼1

P qn; xNþnh i ynjð ÞP yn yn�1jð Þ;

where <qn,xm> denotes the bit differences between the two 32-bit frame vectors qn and xm.
This model incorporates both the temporal consistency constraint and the ambient/
interference hidden Markov model.

4.3 Post-match consistency filtering

People often talk with others while watching television, resulting in sporadic yet strong
acoustic interference, especially when using laptop-based microphones for sampling the
ambient audio. Given that most conversational utterances are 2–3 s in duration [2], a simple
exchange might render a 5-s query unrecognizable.

To handle these intermittent low-confidence mismatches, we use post-match filtering.
We use a continuous-time hidden Markov model of channel switching with an expected
dwell time (i.e. time between channel changes) of L seconds. The social-application server
indicates the highest-confidence match within the recent past (along with its “discounted”
confidence) as part of the state information associated with each client session. Using this
information, the server selects either the content-index match from the recent past or the
current index match, based on whichever has the higher confidence.

We use Mh and Ch to refer to the best match for the previous time step (5 s ago) and its
respective log-likelihood confidence score. If we simply apply the Markov model to this
previous best match, without taking another observation, then our expectation is that the
best match for the current time is that same program sequence, just 5 s further along, and
our confidence in this expectation is Ch-l/L where l=5 s is the query time step. This
discount of l/L in the log likelihood corresponds to the Markov model probability, e−l/L, of
not switching channels during the l-length time step.
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An alternative hypothesis is generated by the audio match for the current query. We use
M0 to refer to the best match for the current audio snippet: that is, the match that is
generated by the audio fingerprinting software. C0 is the log-likelihood confidence score
given by the audio fingerprinting process.

If these two matches (the updated historical expectation and the current snippet observation)
give different matches, we select the hypothesis with the higher confidence score:

M0;C0f g ¼ Mh;Ch � l=Lf g if Ch � l=L > C0

M0;C0f g otherwise

�

where M0 is the match that is used by the social-application server for selecting related
content and M0 and C0 are carried forward on to the next time step as Mh and Ch.

5 Evaluation of system performance

In this section, we provide a quantitative evaluation of the ambient-audio identification
system. The first set of experiments provides in-depth results with our matching system.
The second set of results provides an overview of the performance of an integrated system
running in a live environment.

5.1 Empirical evaluation

Here, we examine the performance of our audio-matching system in detail. We ran a series
of experiments using 4 days of video footage. The footage was captured from 3 days of one
broadcast station and 1 day from a different station. We jack-knifed this data to provide
disjoint query/database sets: whenever we used a query to probe the database, we removed
the minute that contained that query audio from consideration. In this way, we were able to
test 4 days of queries against 4 days (minus 1 min) of data.

We hand labeled the 4 days of video, marking the repeated material. This included most
advertisements (1,348 min worth), but omitted the 12.5% of the advertisements that were
aired only once during this four-day sample. The marked material also included repeated
programs (487 min worth), such as repeated news programs or repeated segments within a
program (e.g., repeated showings of the same footage on a home-video rating program). We
also marked as repeats those segments within a single program (e.g., the movie “Treasure
Island”) where the only sounds were theme music and the repetitions were indistinguishable
to a human listener, even if the visual track was distinct. This typically occurred during the
start and end credits of movies or series programs and during news programs which
replayed sound bites with different graphics.

We did not label as repeats: similar sounding music that occurred in different programs
(e.g., the suspense music during “Harry Potter” and random soap operas) or silence periods
(e.g., between segments, within some suspenseful scenes).

Table 1 shows our results from this experiment, under “clean” acoustic conditions, using
5- and 10-s query snippets. Under these “clean” conditions, we jack-knifed the captured
broadcast audio without added interference. We found that most of the false positive results
on the 5-s snippets were during silence periods, during suspense-setting music (which
tended to have sustained minor cords and little other structure).

To examine the performance under noisy conditions, we compare these results to those
obtained from audio that includes a competing conversation.We used a 4.5-s dialog, taken from
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Kaplan’s TOEFL material [12].1 We scaled this dialog and mixed it into each query snippet.
This resulted in 1/2 and 51/2 s of each 5- and 10-s query being uncorrupted by competing
noise. The perceived sound level of the interference was roughly matched to that of the
broadcast audio, giving an interference-peak-amplitude four times larger than the peak
amplitude of the broadcast audio, due to the richer acoustic structure of the broadcast audio.

The results reported in Table 1 under “noisy” show similar performance levels to those
observed in our experiments reported in Subsection 5.2. The improvement in precision (that
is, the drop in false positive rate from that seen under “clean” conditions) is a result of the
interfering sounds preventing incorrect matches between silent portions of the broadcast
audio.

Due to the manner in which we constructed these examples, longer query lengths
correspond to more sporadic discussion, since the competing discussion is active about half
the time, with short bursts corresponding to each conversational exchange. It is this type of
sporadic discussion that we actually observed in our “in-living-room” experiments
(described in the next section). Using these longer query lengths, our recall rate returns
to near the rate seen for the interference-free version.

5.2 “In-living-room” experiments

Television viewing generally occurs in one of three distinct physical configurations: remote
viewing, solo seated viewing, and partnered seated viewing. We used the system described
in Section 3 in a complete end-to-end matching system within a “real” living-space
environment, using a partnered seated configuration. We chose this configuration since it is
the most challenging, acoustically.

Remote viewing generally occurs from a distance (e.g., from the other side of a kitchen
counter), while completing other tasks. In these cases, we expect the ambient audio to be
sampled by a desktop computer placed somewhere in the same room as the television. The
viewer is away from the microphone, making the noise she generates less problematic for
the audio identification system. She is distracted (e.g., by preparing dinner), making errors
in matching less problematic. Finally, she is less likely to be actively channel surfing,
making historical matches more likely to be valid.

Table 1 Performance results of 5- and 10-s queries operating against 4 days of mass media

Query quality/length

Clean Noisy

5 s 10 s 5 s 10 s

False-positive rate 6.4% 4.7% 1.1% 2.7%
False-negative rate 6.3% 6.0% 83% 10%
Precision 87% 90% 88% 94%
Recall 94% 94% 17% 90%

False-positive rate=FP/(TN+FP); False-negative rate=FN/(TP+FN); Precision=TP/(TP+FP); Recall=TP/
(TP+FN)

1 The dialog was: (woman’s voice) “Do you think I could borrow ten dollars until Thursday?,” (man’s voice)
“Why not, it’s no big deal.”
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In contrast with remote viewing, during seated viewing, we expect the ambient audio to
be sampled by a laptop held in the viewer’s lap. Further, during partnered, seated viewing,
the viewer is likely to talk with her viewing partner, very close to the sampling microphone.
Nearby, structured interference (e.g., voices) is more difficult to overcome than remote
spectrally flat interference (e.g., oven–fan noise). This makes the partnered seated viewing,
with sampling done by laptop, the most acoustically challenging and, therefore, the
configuration that we chose for our tests.

To allow repeated testing of the system, we recorded approximately 1 h of broadcast
footage onto VHS tape prior to running the experiment. This tape was then replayed and the
resulting ambient audio was sampled by a client machine (the Apple iBook laptop
mentioned in Subsection 3.1).

The processed data was then sent to our audio server for matching. For the test described
in this section, the audio-server was loaded with the descriptors from 24 h of broadcast
footage, including the 1 h recorded to VCR tape. With this size audio database, the
matching of each 5-s query snippet took consistently less than 1/4 s, even without the
RANSAC sampling [4] used by Ke et al. [7].

During this experiment, the laptop was held on the lap of one of the viewers. We ran five
tests of 5 min each, one for each of 2-foot increase in distance from the television set, from
2- to 10-feet. During these tests, the viewer holding the iBook laptop and a nearby viewer
conversed sporadically. In all cases, these conversations started 1/2–1 min after the start of
the test. The laptop–television distance and the sporadic conversation resulted in recordings
with acoustic interference louder than the television audio whenever either viewer spoke.

The interference created by the competing conversation, resulted in incorrect best
matches with low confidence scores for up to 80% of the matches, depending on the
conversational pattern. However, we avoided presenting the unrelated content that would
have been selected by these random associations, by using the simple model of channel
watching/surfing behavior described in Subsection 4.2 with an expected dwell time (time
between channel changes) of 2 s. This consistent improvement was due to correct and
strong matches, made before the start of the conversation: these matches correctly carried
forward through the remainder of the 5 min experiment. No incorrect information or chat
associations were visible to the viewer: our presentation was 100% correct.

We informally compared the viewer experience using the post-match filtering
corresponding to the channel-surfing model to that of longer (10-s) query lengths, which
did not require the post-match filtering. The channel-surfing model gave the more
consistent performance, avoiding the occasional “flashing” between contexts that was
sometimes seen with the unfiltered, longer-query lengths.

To further test the post-match surfing model, we took a single recording of 30 min at a
distance of 8 ft, using the same physical and conversational set-up as described above. On
this experiment, 80% of the direct matching scores were incorrect, prior to post-match
filtering. Table 2 shows the results of varying the expected dwell time within the channel
surfing model on this data. The results are non-monotonic in the dwell time due to the non-
linearity in the filtering process. For example, between L=1.0 and L=0.75, an incorrect
match overshadows a later, weaker correct match, making for a long incorrect run of labels
but, at L=0.5, the range of influence of that incorrect match is reduced and the later, weaker
correct match shortens the incorrect run length.

These very low values for the expected dwell times were possible in part because of the
energy distribution within conversational speech. Most conversations include lulls and
these lulls are naturally lengthened when the conversation is driven by an external
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presentation (such as the broadcast itself or the related material that is being presented on
the laptop). Furthermore, in English, the overall energy envelope is significantly lower at
the end of simple statements than at the start and, English vowel–consonant structure gives
an additional drop in energy about 4 times per second. These effects result in clean audio
about once each 1/4 s (due to syllable structure) and mostly clean audio capture about once
per minute (due to sentence-induced energy variations). Finally, we saw very clean audio
with longer durations but less predictable, typically during the distinctive portions of
the broadcast audio presentation (due to conversational lulls while attending to the
presentation). Conversations during silent or otherwise non-distinctive portions of the
broadcast actually help our matching performance by partially randomizing the incorrect
matches that we would otherwise have seen.

Post-match filtering introduces 1–5 s of latency in the reaction time to channel changes
during casual conversation. However, the effects of this latency are usually mitigated
because a viewer’s attention typically is not directed at the web-server-provided information
during channel changes; rather, it is typically focused on the newly selected TV channel,
making these delays largely transparent to the viewer.

These experiments validate the use of the audio fingerprinting method developed by Ke
et al. [7] for audio associated with television. The precision levels are lower than in the
music retrieval application that they have described, since broadcast television is not
providing the type of distinctive sound experience that most music strives for. Nevertheless,
the channel surfing model ensures that the recall characteristic is sufficient for using this
method in a living room environment.

6 Discussion

The proposed applications rely on personalizing the mass-media experience by matching
ambient-audio statistics. The applications provide the viewer with personalized layers of
information, new avenues for social interaction, real time indications on show popularity and
the ability to maintain a library of the favorite content through a virtual recording service.

These applications are provided while addressing five factors, we believe are imperative
to any mass personalization endeavor:

1. Guaranteed privacy
2. Minimized installation barriers
3. Integrity of mass media content
4. Accessibility of personalized content
5. Relevance of personalized content

Table 2 Match results on 30 min of in-living room data after filtering using the channel surfing model

Surf dwell time (s) Correct labels

1.25 100%
1.00 78%
0.75 78%
0.50 86%
0.25 88%

The correct label rate before filtering was only 20%
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We now discuss how these five factors are addressed within our mass-personalization
framework.

The viewer’s privacy must be guaranteed. We meet this challenge in the acoustic domain
by our irreversible mapping from audio to summary statistics. No one receiving (or
intercepting) these statistics is able to eavesdrop on background conversations, since the
original audio never leaves the viewer’s computer and the summary statistics are insufficient
for reconstruction. Thus, unlike the speech-enabled proactive agent by [6], our approach
cannot “overhear” conversations. Furthermore, the system can be used in a non-continuous
mode such that the user must explicitly indicate (through a button press) that they wish a
recording of the ambient sounds. Finally, even in the continuous-case, an explicit ‘mute’
button provides the viewer with the degree of privacy she feels comfortable with.

Another level of privacy concerns surround the collection of “traces” of what each
individual watches on television. As with web browsing caches, the viewer can obviate
these concerns in different ways: first and foremost by simply not turning on logging; by
explicitly purging the cache of what program material the viewer has watched (so that the
past record of her broadcast-viewing behavior is no longer available in either server or
client history); by watching program material without starting the mass-personalization
application (so that no record is ever made of this portion of her broadcast-viewing
behavior); by “muting” the transmission of audio statistics (so that the application simply
uses her previously known broadcast station to predict what she is watching).

The second factor is the minimization of installation barriers, both in terms of simplicity
and proliferation of installation. Many of the interactive television systems that have been
proposed in the past, relied on dedicated hardware and on the accessibility to broadcast-side
information (like a teletext stream). However, except for the limited interactive scope of
pay-per-view applications, these systems have not achieved significant penetration rates.
Even if the penetration of teletext-enabled personal video recorders (PVRs) increases, it is
unlikely to equal the penetration levels of laptop computers in the near future. Our system
takes advantage of the increasing prevalence of personal computers equipped with standard
microphone units. By doing so, our proposed system circumvents the need for installing
dedicated hardware and the need to rely on a side information channel. The proposed
framework relies on the accessibility and simplicity of a standard software installation.

The third factor in successful personalization of mass-media content is maintaining the
integrity of the broadcast content. This factor emerges both from viewers who are
concerned about disturbing their viewing experience and from content owners who are
concerned about modified presentations of their copyrighted material. For example, in a
previously published attempt to associate interactive quizzes and contests with movie
content, the copyright owners prevented them from superimposing these quizzes on the
television screen during the movie broadcast. Instead, the cable company had to leave a gap
of at least 5 min between their interactive quizzes and the movie presentation [15]. Our
proposed application presents the viewer with personalized information through a separate
screen, such as a laptop or handheld device. This independence guarantees the integrity of
the mass media channel. It also allows the viewer to experience the original broadcast
without modification, if so desired, by simply ignoring the laptop screen.

Maintaining the simplicity of accessing the mass personalization content is the fourth
challenge. The proposed system continuously caches information that is likely to be
considered relevant by the user. However, this constant stream is passively stored and not
imposed on the viewer in any way. The system is designed so that the personalized material
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can be examined by the viewer in her own pace or alternatively, to simply store the
personalized material for later reference.

Finally, the most important factor is the relevance of the personalized content. We
believe that the proposed four applications demonstrate some of the potential of
personalizing the mass-media experience. Our system allows content producers to provide
augmented experiences, a non-interactive part for the main broadcast screen (the traditional
television, in our descriptions) and an interactive or personalized part for the secondary
screen. Our system potentially provides a broad range of information to the viewer, in much
the same flavor as the text-based web search results. By allowing other voices to be heard,
mass personalization can have increased relevance and informational as well as
entertainment value to the end user. Like the web, it can broaden access to communities
that are otherwise poorly addressed by most distribution channels. By associating with a
mass-media broadcast, it can leverage popular content to raise the awareness of a broad
cross section of the population to some of these alternative views.

The paper emphasizes two contributions. The first is that audio fingerprinting can
provide a feasible method for identifying which mass-media content is experienced by
viewers. Several audio fingerprinting techniques might be used for achieving this goal.
Once the link between the viewer and the mass-media content is made, the second
contribution follows, by completing the mass media experience with personalized Web
content and communities. These two contributions work jointly in providing both simplicity
and personalization in the proposed applications.

The proposed applications were described using a setup of ambient audio originating
from a TV set and encoded by a nearby personal computer. However, the mass-media
content can originate from other sources like radio, movies or in scenarios where viewers
share a location with a common auditory background (e.g., an airport terminal, lecture, or
music concert). In addition, as computational capacities proliferate to portable appliances,
like cell phones and PDAs, the fingerprinting process could naturally be carried out on such
platforms. For example, SMS responses of a cell phone based community watching the
same show can be one such implementation. Thus, it seems that the full potential of mass-
personalization will gradually unravel itself in the coming years.
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