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ABSTRACT
Streaming media is gaining in popularity for viewing both,
video-on-demand content as well as live Webcasts. Stream-
ing servers must meet strict data-delivery timing constraints
in order to provide acceptable viewing quality. These con-
straints can be achieved only if the servers are not allowed
to exceed their operational saturation point. At the same
time, providers of streaming services need to maximize the
use of their infrastructure to remain cost-effective. These
competing goals motivate development of detailed models
that predict server saturation points under extremely di-
verse workloads.

Due to the intricate effects of distinct usage patterns on
low-level measurements, no single server-side or client-side
metric can adequately predict saturation for a non-controlled
mixture of workloads. Furthermore, the dynamically chang-
ing nature of streaming workloads render simple linear statis-
tics inadequate. Instead, we propose a methodology that
can build predictive models using a relatively small number
of calibration workloads. These models include both server-
and client-side metrics and are accurate in predicting server
performance, not only for the calibration workloads but also
for arbitrary mixtures. We contend that the strength of our
approach to modeling streaming-server behavior is its highly
data-driven nature. The same calibration regime and mod-
eling method are shown to be applicable to different stream-
ing servers and across the wide variety of workloads seen in
today’s environments.
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1. STREAMING-SERVER MODELING
The demand both for streaming live events and for stream-

ing file-based Video-on-Demand (VoD) media is increasing
as the content base and the available bandwidth increase.
The viewing requirements for streaming impose strict tim-
ing constraints on the delivery of data. If these timing con-
straints are not met, the quality of viewing drops due to
stuttering audio or frozen video and due to decompression
artifacts from lost data. If too many client requests are
accepted by a streaming media server, the quality of ser-
vice degrades across all client sessions or fails completely
on a subset of client sessions. The actual saturating load
on a streaming server depends on the detailed characteris-
tics of the media being served to the various clients. The
load is affected by the specific combination of “live” versus
“file-based” streams, their relative popularity, and their bit
and packet rates. Since a streaming server will support an
unknown, dynamic mixture of these clients, saturation pre-
diction must handle mixtures of these workloads without
knowing client counts or request types.

In our experiments, we have found that simple measure-
ments are not sufficient for predicting when the server will
fail to maintain high-quality service to the clients. The
temporal variance observed in simple server-side measure-
ments, such as load average, makes their direct usage in-
effective. Yet, the long-term averages needed to reduce
this variance are not consistent with the need to quickly
predict performance in the dynamically changing loading
environment seen by a real-world installation. Similarly,
trends in client-side measurements like jitter and rebuffering
counts [7] are obscured due to the variance caused either by
artificially smoothed transmission (packet smoothing) or by
bursty transmission (packet blitting).

Our approach is distinct from prior work in streaming
server characterization in that we focus on streaming-server
performance prediction, in contrast to network effects [17],
media-access patterns [16, 5] and data-layout effects [8]. We
do not assume that the client-imposed workload is purely
VoD [4] but instead support mixed workloads. We avoid
relying on a list of the client sessions loading the server [3].
This type of information may be hard to get, due to privacy
and security concerns, and, once known, may be difficult
to translate into media characteristics: the determination
of relative content popularity and the gradation between
various bit and packet rates may be non-obvious and non-
stationary. Finally, we do not rely on expert intuition to
define an abstract parameterized model [9, 1].

Instead, we take a black-box approach to server model-



ing: we use no privileged information, neither request types
nor client counts. We use low-level measurements from the
streaming server machine and from “probe” clients, along
with some short-time non-linear statistics derived from these
measurements. We successfully predict performance across
the diverse usage profiles generated by varying combinations
of streaming requests. This includes modeling mixtures of
workloads, even though our calibration methodology does
not include explicit measurements from these mixtures. The
combination of our calibration methodology and prediction
modeling allows us to generalize across servers: performance
models are mathematically derived from measured data, in-
stead of being based on visual inspection and expert intu-
ition. Our emphasis on data mining to create prediction
models is seen in other types of failure modeling [6] but pre-
viously has not been applied to predicting streaming-server
failures. This is the first model of streaming server perfor-
mance that has been demonstrated to estimate performance
accurately:

• without using categorical client counts

• without restricting the type of client workload

• using only measured data.

We support these claims by presenting a summary of our
prediction results in the next section. In Section 3, we de-
scribe our experimental set-up and the calibration method-
ology, emphasizing the details critical for achieving reliable
measurements on different servers. Section 4 examines some
of the single-dimensional measurements that have been pro-
posed in the past for characterizing the load on streaming
servers. These single dimensional measurements are shown
to be insufficient when faced with uncertainty in the type
and number of client sessions. In Section 5, we outline
the mathematical approach taken to deriving the predictive
models from calibration measurements. We also provide an
intuitive interpretation for the different measurement-vector
combinations that have been discovered by the mathemati-
cal analysis. Section 6 reiterates our measurement/prediction
philosophy and argues for its strength and generality.

2. PREDICTING SERVER SATURATION
Conceptually, we characterize a streaming server as us-

ing a set of composite resources. We use distinct client
workloads during the calibration phase, not only to iden-
tify these composite-resource models, but also to derive the
corresponding client-to-usage models. Once we have the
composite-resource models, we can use server-side and client-
side measurements on an active server to estimate the cur-
rent resource consumption. As a sample application, we can
use these models in admission control. When there is a pro-
posal to increase the number of clients, we can compute the
new resource consumption as:

Rtarget = Yresourcem + Yclient∆c

Yresource : the measurement-to-resource model

m : the vector of current measurements

Yclient : the client-to-usage model

∆c : a vector of proposed additional clients

Rtarget : the resultant resource usage vector

Table 1: Summary statistics across all experimental

epochs for using an uncertainty region of 5%.

Prediction type Sample Accuracy (%)
set size mean sd min max

self, unsaturated 54 99.3 1.7 91.2 100.0
self, saturated 28 99.9 0.6 97.2 100.0
cross, unsaturated 102 99.0 2.6 85.0 100.0
cross, saturated 376 100.0 0.01 99.8 100.0

With Yresourcem, we estimate the current resource use
on the streaming server. With Yclient∆c, we adjust that
estimate according to the expected load from the clients
that are being considered for admission.

We can admit an additional ∆c clients, if the resultant
Rtarget does not map into the saturation region for the
server. We define saturation as the client workload at which
the streaming server can no longer reliably supply high-
quality service. If a service failure was seen at any time
during an experiment involving some workload mixture and
number of clients, then all measurements at that load are
labeled as failing: the reliability of the service is no longer
sufficient to support that specific mixture of clients.1

The admission control decision will work well if our model-
ing provides us with accurate matrices Yresource and Yclient.
The accuracy of Yresource can be evaluated using self pre-
diction: We repeatedly estimate the resource usage due to
a mixed workload over a local time window. The model
estimates how close the server is to saturation. By setting
a threshold for maximum resource usage, we can go from
the continuous-value estimates to categorical decisions on
whether or not the server is operating within a saturated
zone. Using the independently determined saturated/un-
saturated label for the testing epoch, we then tabulate the
percentage of correct predictions for each epoch.

In self prediction, described above, the target workload for
our prediction is the same as our initial workload. We are
testing how well we can recognize a saturated or unsaturated
state when we are already operating under that workload.
The combined accuracy of Yresource and Yclient can be tested
using cross prediction. Here, the target workload for our pre-
diction is heavier than the initial workload. In this case, we
are testing how well we can predict a saturated or unsatu-
rated state under a workload that is different than the one
we are currently operating under. As with self prediction,
we take the sequence of measurement vectors from our ini-
tial workload and translate each measurement vector into an
estimate of resource usage. We then use our client-to-usage
models (i.e., Yclient) to determine the resultant resource us-
age if we were to add the clients needed to create the heavier
target workload. These modified estimates of resource usage
are then thresholded to give predictions about the saturation
of the server under the heavier target workload. We use the
ground-truth saturation label given to the target-workload
epoch to tabulate the number of correct estimates.

In both self and cross prediction, the threshold that is
used can allow a region of uncertainty. If the threshold
for predicting saturation on ground-truth-labeled saturated
epochs and the threshold for ground-truth-labeled unsatu-
rated epochs are both 100% resource usage, then the region
of uncertainty is zero. If the threshold for ground-truth-

1We give a more exact definition of service failure is in Sec-
tion 3.3.
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Figure 1: Self-prediction accuracy as a function of un-

certainty region. The X axis shows the uncertainty margin,

m, such that predicted usage values between (100 − 1
2
m)% and

(100+ 1
2
m)% are left with an unknown saturation label and do not

contribute to either correct or incorrect prediction percentages.

labeled saturated epochs are reduced to (100 − 1
2
m)% re-

source usage and the threshold for ground-truth-labeled un-
saturated is increased to (100+ 1

2
m)%, then the uncertainty

region is m%. The uncertainty region essentially provides
us with slack in the accuracy of our composite-resource pa-
rameterization, the fidelity of the client model, as well as
the accuracy of the current measurements.

Our results using an uncertainty region of 5% are tab-
ulated in Table 1. These summary statistics are collected
by treating the percentage correct from each experimental
epoch as a single data point and computing the resulting
mean, maximum, minimum, and standard deviation across
distinct experimental epochs.

This summary table shows that our prediction perfor-
mance is highly accurate on both saturated and unsaturated
workloads. We are slightly more accurate on self prediction
than on cross prediction: it is easier to recognize an exist-
ing state than to extrapolate to a new state. We are much
more accurate on predicting saturated workloads than on
predicting unsaturated workloads. This is a result of our
conservative approach to determining saturation: the mod-
els generated from conservatively labeled calibration work-
loads are too conservative when applied to arbitrary mixed
workloads.

Figures 1 (for self prediction) and 2 (for cross prediction)
show the mean, standard deviation, minimum, and maxi-
mum of the prediction results as a function of the uncer-
tainty region. We use box-and-whiskers plotting to show
these statistics: we draw a box extending one standard de-
viation above and one standard deviation below the mean
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Figure 2: Cross-prediction accuracy as a function of un-

certainty region on mixed VoD-Live workloads.

.

and add a single-width line from the minimum to the max-
imum values within each population. These margin plots
show that the mean prediction performance is greater than
95%, all the way down to the zero-uncertainty region. How-
ever, the standard deviation increases and the worst-case
accuracy deteriorates at uncertainty regions less than 5%.
As with the 5% uncertainty results in Table 1, we suffer
from far fewer false negatives than from false positives.

3. METHODOLOGY FOR CALIBRATING
STREAMING SERVERS

This section describes the types of client workloads used
for calibration, lists the details of the experimental set-up,
and defines our notion of service failure. We also enumer-
ate the various components of the measurement vector, and
finally discuss the actual calibration method.

3.1 Client Workload Categories
As with prior work [3], we found that the per-client load

imposed on the server depends on the details of the requests
being made by the clients. In our work, we use three axes
to describe the content requested by each client session:

Repository: The content can either be served from a
locally stored file or it can be relayed from a live stream
received from a remote server or media encoder. We refer to
the locally stored, file-based content as a VoD session and
to the live-stream relayed content as a Live session.

Popularity: The content can either be viewed once by
a single client or viewed by multiple clients. For multiple
viewings of live content, each client synchronously views the
ongoing transmission of a single source. For multiple view-
ings of VoD content, each client asynchronously views the



Table 2: Acronyms for server workloads

Repository Popular Unpopular
low-rate high-rate low-rate high-rate

VoD VPL VPH VUL VUH
Live LPL LPH LUL LUH

mixed MPL MPH MUL MUH

source file, with the relative starting offsets determined by
the inter-arrival rate of the client requests. Even though, at
any given time, the VoD clients are being served different
parts of the same content, the popularity of the VoD content
affects the server performance since the file-buffer cache can
reduce the number of disk accesses. We refer to content that
is viewed only once by a single client session as Unpopular.
Popular content is a single source that is viewed (possibly
asynchronously) by all client sessions of the same category.

Bitrate: The encoding bitrate of the content is nominally
a continously varying dimension. However, in practice, there
are a few standard bit-rates, depending on the media codecs
and target networks. For our current calibration purposes,
we use 300 kbps source material as High-rate and 78 kbps
source material as Low-rate content. These rates were ex-
pected to be seen in mobile wireless streaming applications.
The specific rates used can be changed as appropriate for the
server-access pattern, without invalidating the measurement
or modeling methodology.

These axes provide a description of each client session. If
all of the client sessions that are requested from the server
fall in the same three-axis category, we refer to the workload
as being Pure. If the sessions fall into distinct categories
along one or more of the axes, we refer to the workload
as Mixed. For brevity, we only discuss pure workloads and
workloads that are mixed repository. This type of mixture of
VoD and Live streaming requests has not, to our knowledge,
been modeled in prior work.

We use the following abbreviated naming scheme: the first
letter defines the repository (Live, VoD, or Mixed), the sec-
ond letter defines the popularity (Popular or Unpopular),
and the third letter defines the bit-rate (High-rate or Low-
rate). For brevity, we replace the third letter with x to sig-
nify both high and low bit rates when appropriate. Table 2
summarizes these conventions.

3.2 Experimental set-up
Our experiments run on three distinct sets of machines:

the streaming-server machine that is being calibrated or
tested; up to four live-source machines; and up to six client
machines. The server machine is a dual 1.4 GHz Pentium III
PC with 1 GB memory, running SuSE 8.2 (kernel version
2.4.20). The other machines are selected to have sufficient
compute and I/O capacity, so that they do not influence the
experimental results.2 The streaming-server and the live-
source machines used SCSI disk drives with 50 Mbytes/sec
throughput for the VoD and Live content, respectively. All
the machines were connected to a switched Gigabit network,
isolated to avoid uncontrolled network interference. The
streaming-server software suites used for this paper are the
Darwin Streaming Server, v4.1.3 [2], and Helix Universal
Server, v9.0.3.916 [13].

To avoid performance variation due to differences in the

2In our testbed, the live-source and client machines have
1.0 - 2.4 GHz Pentium III processors with 256 MB - 1 GB
memory.

source content, we use multiple copies of the same mate-
rial for Live and VoD tests. The content consists of MP4
files, optimized for streaming using hint tracks [11]. For our
Live tests, the material is stored on the live-source machines
and is relayed through the streaming server under test using
the Darwin PlaylistBroadcaster [2]. We chose PlaylistBroad-
caster due to its inter-operability with both the Helix and
Darwin servers and its lightweight CPU utilization: it al-
lows us to reliably transmit hundreds of independent Live
streams from a single live-source machine. For each live
stream received, the streaming server suffers loading over-
head, whether or not that stream is used. To avoid this
additional penalty, we exactly match the number of indepen-
dent live-source streams to the streams relayed by streaming
server for each experiment.

To avoid performance variation due to interfering disk ac-
cesses, measurement logging on the streaming server is done
to a separate disk. Similarly, to minimize the performance
variation due to differences in content layout, the VoD ma-
terial is stored on the streaming server disk just after re-
formatting, thereby avoiding file fragmentation. To insure
that each distinct VUx request retrieves the content from
disk (instead of the file-buffer cache), we create 300 distinct
copies of the VoD content on the streaming-server disk.

In our experiments, reaching server saturation required
nearly 3000 clients in some situations. This large num-
ber made it necessary to develop an application that could
support a large number of simultaneous streaming sessions
without overloading the client machine. Our client applica-
tion creates RTP [14] (over UDP) streaming sessions, using
RTSP [15] as the control protocol. For each session, we
can record session-level statistics, like play failure, startup
delay, total duration of data delivery and number of bytes
delivered. The client can also record a trace of RTP/RTCP
packets. This provides the packet arrival time, size, and
sequence number, as well as the media decode time.

Each experimental period has three distinct phases: ramp-
up, steady-state, and termination. During the first phase,
loading clients are added at 500 ms intervals, which avoids
start-up failure purely due to transient effects. The loading
clients are used to induce a particular type of workload on
the server. After reaching the steady-state period, we col-
lect measurements from the streaming server machine.We
also sequentially launch 20 probing-session clients, which
run for non-overlapping 1 minute periods. These probing
clients collect statistics and traces, both within our calibra-
tion experiments and, ultimately, on an in-service streaming
server. Since probing-client statistics will also be collected
on in-service streaming servers, we want the probing client
to be both informative and low-overhead. For this reason,
we use a VUL request for each probing session. We chose
a VoD request since we could always be assured that the
chosen file-based content would be available and unchang-
ing from one probe to the next. We chose Unpopular since
we do not always know what content is currently Popular
(that is, likely to be partially in the file-buffer cache) but
we can request distinct probe-only content and be assured
that it is unpopular. We chose Low-rate to minimize the
overhead induced by the probe.

3.3 Saturation Criteria
We use the client-side requirements published by Keynote

Inc. [12] for a highest quality-of-service grade to guide us in



our definition of streaming-server failure. However, the par-
allel with Keynote is not complete: unlike Keynote, we do
not set up actual playback clients to evaluate these criteria.
Instead, in calibration and validation, we use the session-
level data from all of the clients and the packet-level data
from our probing clients.

Our criteria for saturation are:
Play-Request Failure: If any loading- or probing-client

session fails to establish a streaming session, the server is
considered saturated.

Duration Violation: If the actual duration of any client
session is less than 97% or greater 103% of the requested
duration, there has been a failure at the server to provide
the data-delivery timing to support smooth, uninterrupted
streaming without risking client-buffer over- or under-flow.

Size Violation: If the number of bytes received by any
loading- or probing-client session is less than 97% of the
expected data from the requested source material, there has
been a failure at the server.

Rebuffering Violation: If the amount of time that the
probing-client sessions spend waiting for start-up delays and
mid-stream data rebuffering delays, plus a rebuffering-event
penalty, exceeds 3% of the total play time for the probe-
client sessions, there has been a failure at the server to pro-
vide the required streaming quality. We use a rebuffering-
event penalty of 2 seconds for each distinct mid-stream buffer
violation. This requirement is from a Keynote requirement
to avoid excessively long startup delays and to also avoid
frequent mid-stream rebuffering events.

For calibration experiments, we refine our definition of re-
buffering events. In the experiments on the Helix server [13],
we saw increasingly bursty packet transmission as the server
workload increased. The timing of these bursts was such
that, on occasion one or two packets would be delayed be-
yond their delivery deadline. This small amount of over-
delayed data resulted in rebuffering violations on those ex-
periments, even when the server was otherwise not satu-
rated. We found that, by re-categorizing these few packets
as being lost data (instead of late data), we could avoid a
rebuffering violation without inducing a size violation. This
greatly improved the reliability and reproducibility of our
decision surface. Therefore, in our saturation decision cri-
teria, if the amount of sequential late-arriving data is less
than 3% of the previously received data, that sequential late-
arriving data is relabeled as missing and the rebuffering-
event penalty is not imposed. Otherwise, that whole se-
quence of the late-arriving data is marked as a rebuffering
event and incurs the rebuffering-event penalty.

If any of these violations are seen at any time during the
experimental epoch, the streaming server is labeled as being
saturated for the full experimental epoch. For our calibra-
tion data, each experimental epoch used to determine the
saturation point consists of five 20-minute measurement sets
at the possibly saturating workload. This repetition insures
a reproducible, internally consistent categorization of the
server state.

3.4 Measurement and Labeling Data
We derive our predictive models under a classic labeled

training data approach. This requires that our calibration
measurements include both the measurement data, which
will be available from an in-service media-streaming server,
and the label data, which will not be available.

Table 3: Saturation points for pure workloads on the

Apple Darwin and the RealNetworks Helix servers.

Darwin/ Popular Unpopular
Helix low-rate high-rate low-rate high-rate
VoD 726/1220 425/590 259/228 33/91
Live 1976/2850 1158/1460 405/492 405/396

For our measurement vector, we use order filters on in-
stantaneous measurement values. Order filters provide local
percentile measures. For example, if we select a 60-sample,
5th-percentile filter, then, for each instant, the order filter
would collect the 60 previous input values, sort them from
largest (100th percentile) to smallest (0th percentile), and
then output the 12th smallest (5th percentile). Thus, a run-
ning median over a local-time window is a 50th-percentile
order filter. We use multiple order filters instead of local
means and local standard deviations. This choice provides
statistical measures on small-sample populations that are
less prone to distortion by the outliers within the popula-
tion. This is important when trend and range estimates are
needed with low-latency. Actual in-service streaming server
management will be latency sensitive, due to the dynamic
nature of their workloads.

We derive a measurement vector once per second that
includes sample values that were measured during that one-
second interval and outputs from 60-second order filters for
the 0th, 5th, 25th, 50th, 75th, 95th, and 100th percentiles. For
our measurement vector, we collect measurements both from
the streaming-server machine and from the probe sessions:

Instantaneous measurements from the streaming-
server machine: Once per second, we record: interrupt
rate, context-switching rate, time running non-kernel code,
time running kernel code, idle time (including IO-wait time),
one-minute load average, incoming UDP-packet rate, out-
going UDP-packets rate, disk-read-access rate, disk-sector-
read rate, disk-write-access rate, disk-sector-write rate. In
addition, we create some combined statistics from the server
reports: the summed incoming and outgoing UDP-packet
rates, the summed disk-read-access and -write-access rates,
the summed disk-sector-read and -write rates.

Startup metrics derived from the probe-session
statistics: The probe clients use the RTSP protocol to ini-
tiate each streaming session: They obtain a description of
the media using a DESCRIBE command, indicate their de-
sire to receive audio and video using two SETUP commands,
and then start these media streams with a PLAY command.
We compute two delay metrics: one starting from the first
SETUP request, the other starting from the PLAY request,
and both ending at the first RTP packet arrival. The DE-
SCRIBE request is not used as a starting point, since a
server might have cached an earlier response. Using SETUP
and PLAY protects us from different server designs (i.e., ea-
ger vs lazy). We use replication to translate these once-per-
probe-launch delay values into once-per-second values for
our measurement vector.

Metrics derived from the probe-session traces: Once
per second, we obtain simple metrics from the probe-session
trace, e.g. bytes received per second, packet-loss rate. We
further compute some statistics from the packet trace: the
packet-arrival offset and the fine-grain variation in band-
width.

The packet-arrival offset is the difference between each
packet-delivery time and its deadline. This offset value is



greater than zero when the packet is late and less than
zero when it is early. To obtain half-rectified packet-arrival
offsets, the negative offsets are replaced by zeroes, thereby
discarding everything about early packets, other than their
count. We include this metric since late packets are often
more problematic, resulting in rebuffering events or in in-
creased lost-data counts. For fully-rectified packet-arrival
offsets, the negative offsets are replaced by their magnitude,
so that early and late packets are treated equally. We in-
clude this metric to help determine when a server is resorting
to packet blitting. Packet blitting is typically seen on best-
effort servers that are heavily loaded. We use one-second-
window averages, medians, maxima, and minima to trans-
late these once-per-packet arrival-offset values into once-per-
second values for our measurement vector.

For fine-grain variations in the received bandwidth, we
use one-second-window median, minimum, and maximum
from the ratio between the bandwidths received by the probe
client during a sliding 100-ms period and the bandwidth re-
ceived during the full one-second interval. This statistic was
included to try to distinguish between packet smoothing and
packet blitting by measuring uniformity of the sub-second
bandwidth usage. Packet smoothing is the artificial smooth-
ing of local variations in bandwidth by spreading out the
delivery of packets that have the same media decode time
stamp, such as would occur for multi-packet video frames.
When lightly loaded, a well-written streaming server will
smooth the packet-delivery times, to avoid overloading the
client’s network-input buffer. In terms of the packet-arrival
offset measurements defined above, packet smoothing looks
similar to packet blitting: it will have artificially early and
late packets. Since packet smoothing is a desirable behavior
seen on lightly loaded servers and packet blitting is an un-
desirable behavior seen on heavily loaded servers, including
this disambiguating statistic is helpful.

Ground-truth data for calibration As mentioned above
we create our predictive models using labeled training data.
For label data, we use our normalized client load, x =
[· · · cijk/Sijk · · · ] where c = [· · · cijk · · · ] is the vector of
loading-clients counts for each pure workload type ijk and
Sijk is the saturating client count for that pure workload
type. These saturating client counts, Sijk, are determined
in our calibration process and are listed in Table 3 for Dar-
win and Helix. We do not need this data for anything other
than calibration or for anything other than pure workloads.

3.5 Calibration Process
Our calibration process consists of two phases. We first

determine the saturation point, Sijk, for each of the pure-
workload types. As mentioned in Subsection 3.3, the satu-
ration point is the minimum workload at which one or more
QoS violations occur during any of five 20-minute measure-
ment periods under that workload. Once we have found
the saturation workload for a given pure workload type, we
collect measurement data at pure workloads below that sat-
uration point. Since we are primarily interested in recogniz-
ing server saturation and in predicting the transition from
unsaturated to saturated states under additional workload,
we collect this measurement data in the range from 70% to
100% saturated. For the specific models reviewed in this
paper, we collected one 20-minute measurement period on
70%, 75%, 80%, 85%, 90%, 95%, and 100% of the saturating
loads for each of the pure workloads. This is the data that
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Figure 3: CPU usage for LPx, LUx, and VPx

we used to create the models described in Section 5.
We validate these prediction models on mixed workloads

only. Using only pure-workload calibration data allows us
to minimize the required number of experiments: the server
administrator who uses our approach does not need to recre-
ate all of the different workloads mixtures under which the
server will operate. Using only mixed-workload data to test
our model minimizes the chance that our validation results
are overly optimistic. There will always be some degree
of mismatch between training and testing configurations.
Training and testing on the same experimental configura-
tion does not provide a realistic measure of the robustness
of the derived models. We believe that we avoid that un-
realistic optimism in this paper by training and testing on
distinct configurations of workloads.

4. ISOLATED MEASUREMENTS ACROSS
WORKLOADS

In this section, we examine measurements from pure work-
loads that have previously been proposed as reliable indica-
tors of server performance: specifically, we consider CPU us-
age, disk-sector-read rates, UDP network traffic, and client
packet jitter. Since our goal is to enable a black-box eval-
uation of in-service streaming servers, we need to find an
evaluation metric or set of metrics that can predict satura-
tion without knowing the details of the client workload. If
we decide to use a measurement to estimate the resource
stress that caused saturation for a client type, we need to
satisfy several criteria with regard to that measurement.

Reliable: The measurements should be predictive of the
workload level using local values. In particular, the statisti-
cal variance in the measurement at a fixed workload level
should not exceed the change in the mean measurement
value across distinct loads of the same client type. Oth-
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Figure 4: Probe-client packet-arrival jitter for LPx, LUx,

and VUx. Only unambiguous and nearly-unambiguous mea-

surement curves are shown in these plots. Also, low- and high-

bitrate data were combined before plotting whenever the two

showed no statistically significant differences.

erwise, one cannot distinguish a change in workload level
from measurement noise.

Unambiguous: A measurement may reflect the load due
to different workload types. In that case, the measurement
should be used for predicting only the workload types with
the largest effect. Otherwise, when operating under mixed
workloads, this measurement will over-estimate the satura-
tion level of the server, due to the contributions from more
dominant workload types.

Complete: Each client type must have at least one way
to predict its saturation. If we cannot provide this level of
prediction on pure workloads, we cannot hope to do so on
an in-service streaming server that will have an unknown
mixture of client types.

In the plots that follow, and the related plots in Section 5,
we show measurement curves only for those pure-workload
client types on which the measurements are unambiguous
or close to unambiguous. This removes measurement curves
that would give incorrect saturation predictions on the unla-
beled mixed workload seen on an in-service streaming server.
For multi-curve plots, the curves are staggered along the X-
axis for clarity.

Throughout this section, we discuss the results that we
observed when calibrating the Apple Darwin and the Real-
Networks Helix servers. These two servers represent state-
of-the-art streaming servers, and have a similar core archi-
tecture: state-machine-based packet dispatchers. However,
they have very different internal policies, leading to differ-
ing performance on the same hardware (Table 3). While
a single specific performance model does not need to han-
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Figure 5: Combined UDP incoming- and outgoing-

packet rates for LPx and LUH

dle both servers, the methodology that is used to create the
performance model should be independent of the particular
server software. If the prediction model depends on expert
intuition to select the measurement dimensions, the mea-
surement dimensions must be reliable, unambiguous, and
complete, at least for these two example servers.

We show the unambiguous (or nearly unambiguous) curves
for percent CPU usage in Figure 3, for probe-client jitter
in Figure 4, for UDP traffic in Figure 5, and for content-
disk reads in Figure 6. We use the same box-and-whiskers
plots as in Section 2: the horizontal line is the mean value,
the box extends a standard deviation above and below the
mean, and the vertical lines extend from the minimum to
the maximum values.

The CPU measurements (Figure 3) and jitter measure-
ments (Figure 4) for both Helix and Darwin are not reli-
able: they do not show statistically significant trends over
the workload ranges of interest. In fact, on the Helix server,
the mean CPU measurements for LUx workloads (Figure 3-
b) show a slight negative trend with increasing load but
this negative trend is not statistically significant. Also on
the Helix server, the CPU usage for LPx and VPx is non-
monotonic with changing load. We believe this represents an
implicit change in the server policy as it moves from packet
smoothing at low workloads towards packet blitting at high
workloads.

The UDP-traffic measurement (Figure 5) on Helix is reli-
able and unambiguous for LPx workloads, with prediction-
error levels of 9%, but it is not reliable on Darwin. Similarly,
the disk-read measurement (Figure 6) on Helix is reliable for
VUx workloads, with prediction-error levels of 5%, but it is
not reliable on Darwin. Thus, this set of low-level met-
rics does not meet our criteria of being reliable on different
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Figure 6: Rate of content-disk sector reads for VUx

server types or of being complete in predicting saturation
across workloads.

5. DERIVED MODELS FOR PREDICTING
SERVER SATURATION

Using the calibration measurements described in Section 3,
we created composite-resource usage models on the streaming-
server machine that were reliable, unambiguous, and com-
plete. We also created models of the additional usage that
we expected to be induced on the server by each additional
client of the different workload types. We describe the tech-
nique that we used to derive the model and then illustrate
the details using the derived model for the Helix server.

For each calibration experiment that we run on a pure
workload below saturation, we collect measurements once
per second for each 20 minute run and annotate it with
the normalized client workload vector. We start with eight
nominally distinct saturating resource directions, one for
each of the eight workload types. At saturation, each pure
client workload must use 100% of the resource direction on
which it saturates. It can also use between 0% and 100%
of the other resource directions at saturation. In all cases,
the usage of a resource is separately constrained both to
be an affine function of the measurement vector and to be
an affine function of the client workload level. We find
the solution to this problem using projection-onto-convex
sets. In the measurement-to-resource domain, we solve the
problem using robust, total least squares under inequal-
ity and vector-norm constraints [10]. The inequality con-
straints on the robust total-least squares include the con-
straint for non-negative, non-oversaturating resource usage
at the same time as finding the measurement-to-resource
models. The model for the client-to-resource usage is then
refined in the alternate projection step, using the resource
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with Figure 6.

usage estimates derived from the measurements and the
most recent measurement-to-resource models along with the
actual client workloads. Before this model generation, we
adjust our resource usage estimates to the correct range (0
to cijk/Sijk) and then use total least squares. After com-
pleting this process for a fixed number of resource directions,
we consider lowering the number of resource directions by
merging directions that are similar. We measure this sim-
ilarity in direction using the correlation coefficients on the
resource usage across all client types. If the correlation co-
efficient in client usage across two resource dimensions is
greater than 90%, we merge the two resource dimensions
together, in terms of which clients saturate on each dimen-
sion, and repeat the whole model estimation process with
this smaller number of resource dimensions.

For this paper, we applied this approach to the measure-
ments taken from the Helix server, since this server showed
more complex behavior than the Darwin server and therefore
should be the more challenging to model. The result of that
modeling was four measurement-to-resource models and a
matrix description of client-resource usage. In Section 4,
we examined the possibility of using single measurement
models for predicting saturation. We found the UDP-traffic
and disk-read measurements were reliable and unambigu-
ous for LPx and VUx workloads but had fairly large usage-
prediction errors (standard deviation=9% and 5%, respec-
tively). We did not find reliable, unambiguous measure of
saturation for LUx or VPx using single-measurement mod-
els. In contrast, using our modeling approach, we found four
resource dimensions that were reliable and unambiguous for
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packet-jitter shown in Figure 4.

predicting saturation across the eight client types. Figure 7
shows the unambiguous curves for resource R1. Using this
resource model, the usage-prediction error for LPx is 0.8%,
in contrast with the 9% error given by direct UDP-traffic
measurements (Figure 5). Figure 8 shows the unambigu-
ous curves for resource R2. Using this resource model, the
usage-prediction error for VUx is 1.5%, in contrast with the
5% error given by direct disk-read measurements (Figure 6).
Finally, Figures 9 and 10 show the unambiguous curves for
resource R3 and R4, on which VPx and LUx, respectively,
saturate. The usage-prediction error for VPx using resource
R3 is 2.1% and the usage-prediction error for LUx using
resource R4 is 5.6%.

Section 2 summarized the results of applying these mod-
els, derived using only pure workload calibration data, to
mixed workloads. To determine these results, we first did a
single 20-minute experiment at the various mixed-workload
combinations that we wished to test and made a binary de-
termination (saturated/unsaturated) on each of these mixed-
workload tests. This is in contrast with the five 20-minute
experiments we did on each of the pure workloads to de-
termine saturation. Sixteen of the 98 mixed-workload ex-
periments that initially tested as unsaturated consistently
gave contrary self predictions: they self labeled as saturated
using our measurement-based models. When we re-tested
those sixteen outliers, all failed to meet some QoS crite-
ria and, using our conservative labeling, actually were sat-
urated. We contend that the detection by our prediction
approach of these incorrectly labeled test points is a strong

Table 4: Client resource usage. The percentages listed here

are the resource amounts that each pure client workload uses

when loaded to saturation.

Resource usage (percent)
R1 R2 R3 R4

LPH 100 1 98 30
LPL 100 2 99 50
VUH 0 100 1 39
VUL 2 100 13 4
VPH 29 28 100 17
VPL 36 24 100 5
LUH 8 71 87 100
LUL 6 43 51 100

 0
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Figure 11: Decision surface dictated by the client-

resource model for mixed VoD-Live. The two dotted lines

represent the two decision surfaces for a 5% uncertainty margin,

as defined in Section 2.

indication of the predictive power of our models.3

The exact client-to-resource-usage matrix is given in Ta-
ble 4. If the normalized client counts were available, we
could simply use this client-usage matrix to define a piecewise-
linear decision surface in the eight-dimensional client-count
space, according to the four constraint equations Yclientx ≤
100 where Yclient is the client-to-resource usage model (such
as given in Table 4) and x is the eight-element normalized
client count vector, defined in Subsection 3.4. Figure 11
illustrates what these decision surfaces would look like for
high-rate, mixed VoD-Live streams, using a 5% uncertainty
margin, as defined in Section 2.

The client-count based approach was used by Cherkasova
et al. [3]. In our work, we have chosen to use real-time
measurements from the streaming-server machine and from
a probe client to determine the likely saturation behavior.
Our choice is based on two concerns. First, we do not be-
lieve that accurate client counts, categorized according to
popularity, bit-rate, and repository, will be available from in-
service streaming servers, due to the overhead of accurately
creating and maintaining these counts and due to concerns
around possible misuse of this information. Second, we be-
lieve that taking a real-time measurement-based approach
will ultimately be more accurate, since these measurements
will include information about transient overload situations
that could not be captured using non-measurement-based

3In all of the plots shown in Section 2, we used the correct final
label for these outlier points: that is, saturated.



 90

 92.5

 95

 97.5

 100

 10  20  30  40  50  60  70  80  90

A
cc

ur
ac

y 
(%

)

Live Workload Bias (%)

(a) saturated mixed workloads

 90

 92.5

 95

 97.5

 100

 10  20  30  40  50  60  70  80  90

A
cc

ur
ac

y 
(%

)

Live Workload Bias (%)

(b) unsaturated mixed workloads

Figure 12: Self-prediction accuracy for mixed workloads.

These results were achieved with a 5% uncertainty region allowed

for labeling. The X axis shows
P
j,k cLjk/SLjk/

P
i,j,k cijk/Sijk

where cLjk are the client counts for pure live workloads, according

to popularity (j) and bitrate (k).

methods. In lieu of using client counts, we take the mea-
surements described in Subsection 3.4 whenever we need to
estimate the status of a running streaming server and use
our measurement-to-resource-usage models.

We show validation results, derived from short-time mea-
surements for self prediction in Figure 12, and for cross pre-
diction in Figure 13. Both of these figures show percent--
correct prediction as a function of the workload bias towards
VoD or towards Live. For these plots, we define this bias to
be the ratio of the normalized Live-client count to the sum of
the normalized Live- and VoD-client counts, where the nor-
malization equalizes their saturated-workload counts. Thus,
all pure workloads will map to 0 (for pure VoD) or 100 (for
pure Live), independent of the number of clients. The map-
ping from the two axes in Figure 11 to the X axis in Fig-
ures 12 and 13 can be completed by starting with a vertical
line through the origin, sweeping the slope of that line down
until it is horizontal, and placing the measurement epochs
according to when they are encountered in this data sweep.

We can compare the prediction performance that would
be achieved using a perfect client-load oracle and the de-
cision surfaces shown in Figure 11 to the prediction perfor-
mance that we achieve using dynamic measurements and our
measurement-to-resource-usage models. The performance
using measurements is what is shown Figure 12. The per-
formance using an oracle can be determined by visual inspec-
tion of the categorical errors on the marked mixed-workload
experiments. Surprisingly, our average prediction perfor-
mance does not suffer significantly when we use measure-
ments in place of an oracle and the worst-case performance
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Table 5: Most-significant component measurement

weights used in resource R1. Resource R1, on which LPx

saturates, generally corresponds to UDP usage. The measure-

ment type is given in the first column. The remaining columns

indicate the normalized weights on the different percentile filters.
Metric %-filter

0th 5th 25th 50th 75th 95th

UDP out 0.005 0.006 0.024 0.014 0.020 0.009
UDP in+out - 0.004 0.005 0.013 0.013 -
UDP in - - 0.005 - - -

is significantly better, since errors using the oracle-based ap-
proach will result in 0% correct.

The measurement-to-resource-usage models were derived
mathematically, instead of relying on expert intuition. As
such, they are mathematical constructs and do not directly
correspond to the physical resources of a computer system.
Even so, we can examine the weighting coefficients for these
models and extract some intuitive explanations for the types
of information they represent.

Tables 5 through 8 give the most significant coefficients
for the various measurement-to-resource-usage models. In
all cases, the reported coefficients have been normalized so
that the corresponding measurement dimension would have
a standard deviation of one.

R1 Saturating resource for LPx: UDP usage. As
can be seen from Table 5, the resource on which LPx sat-
urates is basically a measure of the UDP usage. The top
10 coefficients and their cohorts, accounting for 97% of the
model’s vector norm, combine different measures of UDP
packets sent and, to a lesser extent, received.

This mathematically derived resource measure corresponds
well to our intuition about the limiting resource for LPx. For



Table 6: Most-significant component measurement

weights used in resource R2. Resource R2, on which VUx

saturates, generally corresponds to disk usage.
Metric %-filter

5th 25th 50th 75th 95th

disk sector read 0.011 0.032 0.050 0.029 0.014
disk block read 0.008 - -0.021 - -
half-rectified receive-time offset

local median - - - - -0.024
rectified receive-time offset

local median - - - - 0.011
disk sector read+write

- - - -0.010 -

Table 7: Most-significant component measurement

weights used in resource R3. Resource R3, on which VPx

saturates (and LPx nearly saturates), generally corresponds to

CPU usage and variability.
Metric %-filter

5th 25th 50th 75th 95th

user+nice time 0.013 0.024 0.026 0.009 -
idle+IO-wait time

- -0.012 0.021 - -0.020
interrupts -0.013 - -0.009 0.014 -
half-rectified receive-time offset

local median - - - - -0.019
local mean - - - 0.012 -0.015
local max - - - - 0.012

UDP in+out - -0.019 0.051 -0.019 -
UDP out - 0.028 -0.043 0.024 -

live popular streams, the small number of incoming sources
and the synchronized retransmission of that data onto the
client streams reduces the per-client workload usage of the
CPU and file-buffer cache. In this case, the inability to
quickly transfer packets to the network interface becomes
the constraining resource.

R2 Saturating resource for VUx: Disk-interface
load As can be seen from Table 6, the resource on which
VUx saturates is largely a measure of the disk-interface load.
The top 10 coefficients and their cohorts account for 97% of
the model’s vector norm. These top coefficients combine dif-
ferent measures of disk usage with variance measures on the
server interrupt rate and the packet-delivery timing, similar
to resource R3 and R4.

Again, our intuition supports disk usage as the limiting
resource for VUx, since each client request results in addi-
tional access requests to the hard disk, none of which can
be avoided through file-buffer-cache usage. The only non-
obvious component of this resource (and of the R3 resource)
is its dependence on the packet-delivery variations seen by
the probe client. As with R3 and R4, this resource folds in
client-side timing information to determine the variability of
the server behavior and presumably the resulting likelihood
that the disk interface will become overloaded due to a local
peak in the accessing requirements. We conclude that us-
ing client-side statistics increases the reliability of this type
of variability estimation in all three of the resource dimen-
sions that it is used: otherwise, the norm-constrained least
squares solution would not have devoted that much of its
total weight budget to these measures.

R3 Saturating resource for VPx: CPU load As can
be seen from Table 7, the resource on which VPx saturates
(and LPx nearly saturates) is basically a measure of the
CPU usage and variability. The top 10 coefficients and their
cohorts account for 93% of the model’s vector norm. These

Table 8: Most-significant component measurement

weights used in resource R4. Resource R4, on which LPx

saturates, generally corresponds to network-usage and packet-

delivery variability.
Metric %-filter

5th 25th 50th 75th 95th

interrupts 0.397 0.181 0.077 -0.745 -
UDP in - 0.614 -0.309 -0.119 -
UDP in+out - 0.045 -0.288 -0.125 0.057
UDP out - - 0.144 0.072 -
rectified receive-time offset:

local mean - - 0.068 0.181 -0.235
local median - - -0.085 -0.124 0.077
local min - - - - 0.124

half-rectified receive-time offset
local mean - - - - 0.141
local max - - - - -0.106
local median - - - - -0.132

fine-grain variation in probe bandwidth
local min - - - - -0.134
local median - - - -0.060 0.097
local max - - - - 0.095

top coefficients combine different measures of CPU usage
and idle time with variance measures on the server interrupt
rate and the packet-delivery timing, similar to resource R2
and R4.

Again, this mathematically derived resource measure cor-
responds well to our intuition and to past results [3]. The
VPx workload will not tend to overload the disk interface,
since even its asynchronous transmission will be mostly served
from the file-buffer cache. Each individual VPx client in-
duces a larger workload on the CPU than the correspond-
ing individual LPx, resulting in a smaller number of sup-
ported clients at saturation. Again, this is intuitive, since
the VPx workload requires the additional overhead of non-
synchronous transmission of the cached data. When nor-
malized by their respective saturation points, VPx and LPx
both use the CPU at nearly the same level. However, by
referring to resource R1, it is clear that LPx saturates on
the inability of the CPU to transfer packets through the
network stack to the network interface. On the other hand,
VPx has a much lower resource consumption for R1, in this
case, the CPU is busy managing file-cache buffers. For server
machines with a different combination of CPU and network-
interface capacity, these relative usage numbers will change.
This highlights the need for a well-defined, formulaic calibra-
tion methodology, so that streaming servers can be quickly
characterized on the hardware that they will ultimately use
when they are in service, without expert intervention.

R4 Saturating resource for LUx: Variability in
network load and packet delivery Based on the more
than 5% prediction-error standard deviation, this resource
direction is the most difficult to capture from the raw mea-
surements available. As shown in Table 8, the modeling
coefficients are comparatively diffuse, with 80 coefficients
required to collect 96% of the model vector norm. Look-
ing at the detailed coefficients suggests that this resource is
modeling the variability in the network load and the packet-
delivery times. We base this statement on the large num-
ber of differences taken between different order statistics
on the measurements that would capture this information.
The differences taken between the order filters on the in-
terrupts per second would capture variations in packet ar-
rivals, since packet arrivals will generate interrupts. The



differences taken between the order filters on UDP activity
will give a similar measure of network-usage variation. The
differences in the probe-client receive-time offsets will tend
to capture a measure of packet smoothing and of packet blit-
ting. Combining that with the metrics describing fine-grain
(sub-second) variations in the probe-received bandwidth can
help to disambiguate these two packet-delivery behaviors.

This resource dimension is not as intuitive as the oth-
ers. However, on consideration, it does make sense. For live
unpopular workloads, the server must handle numerous in-
terrupts, caused by incoming packets from the large number
of live input streams. If the server does not give these inputs
high priority, it could lose data and fail due to a size viola-
tion. If it does give these inputs high priority, it will result
in less uniform transmission of packets to its output clients,
increasing the chances of a rebuffering failure. These failures
are most likely when the delivery timing on the live input
streams is such that their relative packet delivery timing re-
sults in variable loading of the server. This type of failure
will also be more difficult to predict, since it depends on
timing coincidences that may not be local to the available
measurement vector.

6. CONCLUSIONS
In this paper, we have described an approach to streaming-

server calibration, monitoring, and saturation prediction.
Our methodology generalizes across streaming servers and
across streaming-server hardware configurations. Since our
models are based on calibration data to select the most
salient measures of saturation, new software-hardware con-
figurations can be modeled without expert intervention.

Our saturation prediction does not assume that catego-
rized client counts are available from the server. Instead we
actively monitor the status of the server machine and, using
a probe client, we actively sample the client-side statistics.
We carefully structure our measurements so as to be low la-
tency, with no measurement memory beyond the local one-
minute period. Our use of time-localized models allows us
to handle the dynamics of in-service streaming workloads.
Our use of data-driven models allows us to detect and re-
spond to transients in resource usage in a way that client
counts would not allow.

To allow our work to be compared with previous mod-
els [3], we examined the saturated/unsaturated decision sur-
faces that would be generated by our client-to-usage mod-
els in combination with an explicit categorized client count.
Our measurement-based prediction achieves the same mean
performance as this oracle-based approach, with a lower
variance in the per-experiment prediction performance.

Our measurement-based self-prediction results allowed us
to correctly detect several mislabeled test runs.

We plan on examining the effects of model-adaptive re-
duction in the measurement vectors that are collected from
the streaming server machine and from the probe clients. As
pointed out in Section 5, the coefficients in the measurement-
to-resource-usage models tend to be highly concentrated on
a small number of measurement dimensions. By recursively
omitting measurements during our calibration stage and re-
training, we should be able to reduce the size of the measure-
ment vector while minimizing the impact of this reduction
on the prediction performance. Folding this process into the
calibration stage will allow the data reduction to be respon-
sive to the specific streaming server software and hardware.
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