
Abstract 

The problem of efficiently finding similar items in 
a large corpus of high-dimensional data points 
arises in many real-world tasks, such as music, im-
age, and video retrieval.  Beyond the scaling diffi-
culties that arise with lookups in large data sets, the 
complexity in these domains is exacerbated by an 
imprecise definition of similarity. In this paper, we 
describe a method to learn a similarity function 
from only weakly labeled positive examples.  Once 
learned, this similarity function is used as the basis 
of a hash function to severely constrain the number 
of points considered for each lookup.  Tested on a 
large real-world audio dataset, only a tiny fraction 
of the points (~0.27%) are ever considered for each 
lookup.  To increase efficiency, no comparisons in 
the original high-dimensional space of points are 
required.  The performance far surpasses, in terms 
of both efficiency and accuracy, a state-of-the-art 
Locality-Sensitive-Hashing based technique for the 
same problem and data set. 

1 Introduction  

This work is motivated by the need to retrieve similar audio, 
image, and video data from extensive corpora of data.   The 
large number of elements in the corpora, the high dimen-
sionality of the points, and the imprecise nature of “similar” 
make this task challenging in real world systems.   

Throughout this paper, we ground our discussion in a 
real-world task: given an extremely short (~1.4 second) au-
dio “snippet” sampled from anywhere within a large data-
base of songs, determine from which song that audio snippet 
came.   We will use our system for retrieval from a database 
of 6,500 songs with 200 snippets extracted from each song, 
resulting in 1,300,000 snippets (Figure 1). The short dura-
tion of the snippets makes this particularly challenging.  

The task of distortion-robust fingerprinting of music has 
been widely examined.  Many published systems created to 
this point attempt to match much longer song snippets, some 
report results on smaller datasets, and others use prior prob-
abilities to scale their systems  [Ke et al., 2005; Haitsma & 
Kalker, 2002; Burges et al., 2003; Shazam, 2005].   We as-
sume a uniform prior and match extremely small snippets.   

While our system can easily be incorporated into those de-
signed for longer snippet recognition, by testing on short 
snippets we highlight the fundamental retrieval issues that 
are often otherwise masked through the use of extra tempo-
ral coherency constraints made possible with longer snip-
pets.  Further, we will demonstrate improved performance 
on the retrieval of both short and long snippets. 

1.1 Background 

Generally stated, we need to learn how to retrieve examples 
from a database that are similar to a probe example in a 
manner that is both efficient and compact.  One way to do 
this is to learn a distance metric that (ideally) forces the 
smallest distance between points that are known to be dis-
similar to be larger than the largest distance between points 
that are known to be similar [Hastie & Tibrishani, 1996; 
Shental et al., 2002; Bar-Hillel et al., 2002;  Tsang et al., 
2005].  These methods can be used with k-nearest neighbors 
(knn) approaches.  knn approaches are well suited to our 
task: They work with many classes and are able to dynami-
cally add new classes without retraining.   Approximate knn 
is efficiently implemented through Locality-Sensitive Hash-
ing (LSH) [Gionis et al., 1999].  LSH and other hash func-
tions are sublinear in the number of elements examined 
compared to the size of the database.   

LSH works for points with feature vectors that can be 
compared in a Euclidean space.  The general idea is to parti-
tion the feature vectors into l subvectors and to hash each 
point into l separate hash tables, each hash table using one 
of the subvectors as input to the hash function. Candidate 
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Figure 1:   A typical spectrogram and extracted snippets;  note the 
overlap. The task: given any snippet, find others from the same song.   



neighbors can then be efficiently retrieved by partitioning 
the probe feature vector and collecting the entries in the 
corresponding hash bins.  The final list of potential 
neighbors can be created by vote counting, with each hash 
casting votes for the entries of its indexed bin, and retaining 
the candidates that receive some minimum number of votes, 
vt.  If vt = 1, this takes the union of the candidate lists.  If vt = 
l, this takes the intersection. 

This idea has been extended by [Shakhnarovich, 2006] to 
Parameter-Sensitive Hashing (PSH).  To remove the Euclid-
ean requirement,  PSH uses paired examples, both positive 
(similar) and negative (dissimilar) to learn the l hash func-
tions that best cluster the two halves of each positive exam-
ple while best separating the two halves of each negative 
example.   This approach is closest to the one presented 
here. One difference is the choice of learning constraints.  
[Shakhnarovich, 2006] used positive examples (similar 
pairs) and explicitly provided negative examples (dissimilar 
pairs) to induce the learning algorithm to find a hash func-
tion.  The unstated assumption is that any hash function that 
adequately learns the negative examples will provide 
(nearly) equal occupancy on the various hash bins so that 
the validation step does not then process unpredictably large 
numbers of potential neighbors. In our work, the learning 
function is created using only weakly labeled positive ex-
amples (similar pairs) coupled with a forced constraint to-
wards maximum entropy (nearly uniform occupancy).  We 
do not explicitly create negative examples (dissimilar pairs), 
but instead rely on our maximum-entropy constraint to pro-
vide that separation.  As will be shown, our learning con-
straints have the advantage of allowing for similarities be-
tween only nominally distinct samples, without requiring 
the learning structure to attempt to discover minor (or non-
existent) differences in these close examples. 

The remainder of this paper is organized as follows.  The 
next section will describe the properties we need for learn-
ing a hash function, the training procedure and the analysis.  
Section 3 shows how the system can be scaled to handle 
large amounts of data.  Section 4 demonstrates this con-
cretely on a real-world audio-retrieval task. Section 5 closes 
the paper with conclusions and future work.  

2 Learning Hash Functions 

All deterministic hash functions map the same point to 
the same bin.  Our goal is to create a hash function that also 
groups “similar” points in the same bin, where similar is 
defined by the task.  We call this a forgiving hash function 
in that it forgives differences that are small with respect to 
the implicit distance function being calculated. 

To learn a forgiving hash function for this task, we need 
to satisfy several objectives:  (1) The hash function must be 
able to work without explicitly defining a distance metric.  
(2) The hash function must learn with only weakly labeled 
examples; in our task, we have indications of what points 
are similar (the song label), but we do not have information 
of which parts of songs sound similar to other parts.  (3) 
The hash function must be able to generalize beyond the 
examples given; we will not be able to train it on samples 

from all the songs with which we expect to use it.  Effec-
tively, this means that the learned function must maintain 
entropy in the hashes for even new samples.  Whether or not 
the songs have been seen before, they must be well distrib-
uted across the hash bins.  If entropy is not maintained, 
points will be hashed to a small number of bins, thereby 
rendering the hash ineffective.   

The requirement to explicitly control entropy throughout 
training is a primary concern.   In the next section, we dem-
onstrate the use of a neural network with multiple outputs to 
learn a hash function. Entropy is explicitly controlled by 
carefully constructing the outputs of the training examples.   
Other learning methods could also have been used; how-
ever, neural networks [Hertz et al., 1991; Pollack, 1990] are 
suited to this task since, as we will show, controlling the 
entropy of each output and between outputs (to reduce cor-
relation) is possible.  The incremental training of the net-
work provides an opportunity to dynamically set the target 
outputs to give similar songs similar target outputs. 

2.1 Explicitly Maintaining Entropy in Training 

We train a neural network to take as input an audio spectro-
gram and to output a bin location where similar audio spec-
trograms will be hashed.  We represent the outputs of the 
neural network in binary notation; for these experiments, we 
create a hash table with 1024 bins and therefore train the 
network with 10 binary target outputs.1 

For training, we select 10 consecutive snippets from 1024 
songs, sampled 116 ms apart (total 10,240 snippets).   Each 
snippet from the same song is labeled with the same target 
song code.  This is a weak label.  Although the snippets that 
are temporally close may be ‘similar’, there is no guarantee 
that snippets that are further apart will be similar – even if 
they are from the same song.  Moreover, snippets from dif-
ferent songs may be more similar than snippets from the 
same song. However, we do not require this detailed label-
ing; such labels would be infeasible to obtain for large sets. 

The primary difficulty in training arises in finding suit-
able target outputs for each network.  Every snippet of a 
song is labeled with the same target output.  The target out-
put for each song is assigned randomly, chosen without re-
placement from ( )SΡ , where S is 10 bits – i.e., each song 
is assigned a different set of 10 bits and ( )SΡ  is the power 
set, containing 210 different sets of 10 bits.  Sampling with-
out replacement is a crucial component of this procedure.  
Measured over the training set, the target outputs will have 
maximal entropy.  Because we will be using the outputs as a 
hash, maintaining high entropy is crucial to preserving a 
good distribution in the hash bins. The drawback of this 
randomized target assignment is that different songs that 
sound similar may have entirely different output representa-
tions (large Hamming distance between their target outputs).  
If we force the network to learn these artificial distinctions, 
we may hinder or entirely prevent the network from being 
able to correctly perform the mapping.      

                                                 
1  1024 is a small number of bins for a hash table that will hold millions 

of items; in Section 2.3, we will show how to efficiently scale the size. 



Instead of statically assigning the outputs, the target out-
puts shift throughout training.  After every few epochs of 
weight updates, we measure the network’s response to each 
of the training samples.  We then dynamically reassign the 
target outputs for each song to the member from ( )SΡ  that 
is closest to the network’s response, aggregated over that 
song’s snippets. During this process, we maintain two con-
straints: all snippets from each song must have the same 
output and no two songs can have the same target (so that 
each member of ( )SΡ  is assigned once).  This is a suitable 
procedure since the specific outputs of the network are not 
of interest, only the high-entropy distribution of them and 
the fact that same-song snippets map to the same outputs.     

By letting the network adapt its outputs in this manner, 
the outputs across training examples can be effectively reor-
dered to avoid forcing artificial distinctions.  Through this 
process, the outputs are effectively being reordered to per-
form a weak form of clustering of songs: similar songs are 
likely to have small Hamming distances in target outputs.   
More details of a similar dynamic reordering can be found 
in [Caruana et al., 1996].  The training procedure is summa-
rized in Figure 2.   Figure 3 shows the progress of the train-
ing procedure through epochs and compares it to training 
without output reordering2.  Note that without reordering, 
the smaller network’s performance was barely above ran-
dom: 5.4/10.  The larger network without reordering per-
forms marginally better (5.6/10).  However, both networks 
trained with output reordering learn a mapping more consis-
tently than networks without reordering (7.0/10 and 7.5/10). 

2.2 Using the Outputs as Hash-Keys 

In this section, we take a first look at how the network’s 
outputs perform when used as hash keys.  There are two 
metrics that are of primary interest in measuring perform-
ance: (1) the number of candidates found in each hashed bin 
(that is, how many candidates must be considered at each 

                                                 
2 Standard back-propagation (BP) was used to train the networks [Hertz et 
al., 1989].   Parameters for BP: learning rate 0.00025, momentum = 0. 

lookup, indicating how well the candidates are distributed, 
with respect to queries) and (2) the number of hashed bins 
that include a snippet from the same song (indicating accu-
racy). In this section, we use a simple recall criterion:  of the 
snippets in the hashed bin, are any from the correct song.  
Note that this is a very loose indicator of performance; in 
Section 3, when we utilize multiple hashes, we will make 
this constraint much tighter. 

For these exploratory experiments, we trained 58 net-
works, 2 with 5 hidden units, 2 with 7 hidden units, etc, up 
to 2 with 61 hidden units.  Each was then used to hash ap-
proximately 38,000 snippets (drawn from 3,800 songs with 
10 snippets each).  These 3800 songs formed our test set for 
this stage, and were independent from the 1024-song train-
ing set.  For this test, we removed the query q from the da-
tabase and determined in which bin it would hash by propa-
gating it through the networks.  After propagation, for each 
of the 10 network outputs, if the output was greater than the 
median response of that output (as ascertained from the 
training set), it was assigned +1; otherwise, it was assigned 
0.  The median was chosen as the threshold to ensure that 
the network has an even distribution of 0/+1 responses. The 
10 outputs were treated as a binary number representing the 
hash bin.   

Figure 4 shows the total number of candidates (both cor-
rect and incorrect) found in the hashed bin (on average) as a 
function of the number of hidden units in the network.   
Figure 4 also shows the percentage of lookups that resulted 
in a bin which contained a snippet from the correct song.   
To understand Figure 4, the raw numbers are important to 
examine.  Looking at the middle of the graph, every query 
on average was hashed into a bin with approximately 200 
other snippets (~0.5% of the database).  In ~78% of the re-
trievals, the hash bin contained a snippet from the correct 
song.  Note that if the hashes were completely random, we 
would expect to find a snippet from the same song less than 
1% of the time.   Figure 4 also shows the negative effects of 
poorer training on the small networks.   Returning to Figure 
3, we see that even with the output reassignment, the small 
networks (“5 hidden”) lags behind the large networks (“59 

SELECT M=2n songs and DEFINE B(t) = tth binary code 
FOREACH (song Sm) 
  │FOR (Xm iterations ) { ADD snippet Sm,x  to training set } 
  │SELECT target Tm ∈ {0,1} n s.t. Tm1 = Tm2 ⇔ m1 = m 2 
FOR (Idyn iterations) 
  │TRAIN network for Edyn epochs (Edyn passes through data) 
  │FOREACH (song Sm) 

  │  │SET  Am = Σx∈XmO(Sm,x) / Xm  

  │  │ (where O(Sm,x) = actual network output for snippet Sm,x) 
  │SET Ut = { t | 0 < t ≤ M} (the unassigned binary codes)  
  │SET Us = {s | 0 < s ≤ M } (the unassigned songs) 
  │FOR (M  iterations) 
  │  │FIND (s, t) = arg min s∈U

s
 ,t∈U

t
  || B(t) - As ||2  

  │  │SET Ts = B(t) 
  │  │REMOVE s from Us  and REMOVE t from Ut 

TRAIN network for Efixed epochs 
 
Settings used: 
n=10 M= 1024, Xm =10 (∀m), Edyn =10,  Idyn =50, Efixed=500 

 Figure 2:  Training algorithm and parameter settings used. 
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hidden”) by about ½ bit of accuracy.  The effect of the 
poorer training is seen in the larger number of candidates in 
the hashed bin coupled with the small absolute change in 
recall (from ~80% to ~76%) given by the networks with 5-9 
hidden units (Figure 4).     However, by using only networks 
with 11 or more hidden units, we can reduce the number of 
candidates by ~70% (from ~500 to ~150) with minor impact 
on the recall rate (< 2%).  

 In Figure 5, we compare the performance of using the 
outputs of the networks trained with and without output 
reassignment3, and using networks with random weights.  
Note that using random weights is not the same as random 
hashing; by passing snippets through the network, it will be 
more likely to map similar snippets to the same bin; how-
ever, the weightings and combinations of the inputs will not 
be tuned to the task.  As can be seen in Figure 5, for every 
lookup, there is a higher probability of finding a snippet 
from the same song using the fully trained networks, over 
networks with static-output training or with no training.   

2.3 Using the Networks in Practice 

In the previous section, we analyzed the performance of 
each of the networks in terms of the average number of can-
didates in the hashed bins and the accuracy of lookups.  In 
this section, we combine the outputs of the networks to cre-
ate a large-scale hashing system.   So far, each of the net-
works was trained with only 10 outputs, allowing 1024 bins 
in the hash.   A naïve way to scale the hash to a larger num-
ber of bins is to train the network with more outputs.  How-
ever, because larger networks necessitate more training data, 
this becomes computationally prohibitive.4 

Instead, we use two facts: that training networks is a ran-
domized process dependent on the initial weights, and that 
networks with different architectures may learn different 
mappings.  Hence, given that we have already trained multi-
ple networks, we can select bits for our hash from any of the 
networks’ outputs. Numerous methods can be used to select 
which outputs are used for a hash.  We explored three meth-
ods of selecting the outputs: (1) random selection, (2) mini-
                                                 

3 Fig. 3 provided a comparison of two training methods for two sizes 
of networks.  Fig. 5 shows the effects of using the outputs of networks, 
trained with 3 methods, as hashes for the test data, as network size grows. 

4 Depending on # of hidden units, training ranged from hours to days.  

mum-correlation selection, and (3) minimum-mutual-
information selection.  Both of the last two methods are 
chosen in a greedy manner [Chow & Liu, 1969].  By ac-
counting for mutual information, we explicitly attempt to 
spread the samples across bins by ensuring that the com-
bined entropy of the hash-index bits remains high.  This 
method had a slight advantage over the others, so this will 
be used going forward. 

We are no longer constrained to using only 10 bits since 
we can pick an arbitrary number of outputs from the net-
work ensemble for our hash function.  Figure 6 shows the 
performance in terms of the number of candidates in each of 
the hashed bins and correct matches, as a function of bits 
that are used for the hash (or equivalently, the number of 
total hash bins).   Figure 6 also shows two other crucial re-
sults.  The first is that by selecting the hash bits from multi-
ple networks, we decrease the number of candidates even 
when using the same number of bins (1024).  The number of 
candidates in each hashed bin decreased by 50% - from 200 
(Figure 3) to 90 (Figure 4, column 1).   Second, when in-
creasing the number of bins from 1024 (210) to 4,194,304 
(222), we see a decrease in the number of candidates from 90 
to 5 per hashed bin.   Although there is also a decrease in the 
number of correct matches, it is not proportional; it de-
creases by ~50% (instead of decreasing by 94% as does the 
number of candidates).   In the next section, we describe 
how to take advantage of the small number of candidates 
and regain the loss in matches.  
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Figure 6:   As we increase the number of bins by 4096×, the matches 
decrease by 50%.  Meanwhile, the candidates decrease from ~90 to ~5.  
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3  A Complete Hashing System  

From the previous sections, when a new query, q, arrives, it 
is passed into an ensemble of networks from which select 
outputs are used to determine a single hash location in a 
single hash table.  Analogous to LSH, we can also general-
ize to l hash tables, with l distinct hash functions.   To do 
this, we simply select from the unused outputs of the net-
work ensemble to build another hash function that indexes 
into another hash table.   Now, when q arrives, it is passed 
through all of the networks. The outputs of the networks, if 
they have been selected into one of l hashes, are used to 
determine the bin of that hash.  In Figure 7, we experiment 
with the settings for l (1-22) and # of network outputs per 
hash (10-22:  1024 – 4,194,304 bins per hash). 
 In the previous section, we measured the recall as being 
whether the hashed bin contained a snippet from the correct 
song.  Here, we tighten the definition of success to be the 
one we use in the final system.  We rank order the snippets 
in the database according to how many of the l hash bins 
provided by the l hashes contain each snippet.   The top 
ranked snippet is the one that occurs most frequently. We 
declare success if the top snippet comes from the same song 
as query q.  Note we never perform comparisons in the 

original high-dimensional spectrogram representation.  
After passing through the networks, the snippet is repre-
sented by the quantized binary outputs: the original repre-
sentation is no longer needed.  
 As can be seen in Figure 7A, the top line is the perform-
ance of the system with l=22 hashes; with only 1,024 bins, 
the number of candidates is unacceptably large: over 2,000.   
With smaller numbers of hashes (shown in the lower lines), 
the number of candidates decreases.  As expected, looking 
towards the right of the graph, as the number of bins in-
creases, the number of candidates decreases rapidly for all 
of the settings of l considered. 
 Figure 7B provides the most important results.   For the 
top line (22 hashes), as the number of bins increases, the 
ability to find the best match barely decreases – despite the 
large drop in the number of candidates (Figure 7A).  By 
examining only 200-250 candidates per query (~0.6% of the 
database), we achieve between 80-90% accuracy (l > 14).   

In Figure 7B, note that for the lowest two lines (l=1,3), as 
the number of bins increases, the accuracy rises – in almost 
every other case, it decreases.  The increase with l=1-3 oc-
curs because there are a large number of ties (many songs 
have the same support) and we break ties with random se-

Figure 7:   Performance of sys-
tems with (l=1..22) hashes, as a 
function of the number of bins. 
 
A: # of candidates considered 
(smaller better). 
 
B:  % of times correct song iden-
tified (higher better). 
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lection.  As the number of snippets hashed to the same bin 
decreases, the correct song competes with fewer incorrect 
ties and has a higher chance of top rank.  

Finally, in Figure 7A, note that as the number of hashes 
increases, the number of candidates increases almost line-
arly.  This likely indicates that the hashes are largely inde-
pendent.  If they were not independent, the number of 
unique candidates examined would overlap to a much 
greater degree.   If there was significant repetition of candi-
dates across the hashes, we would see the same “frequent-
tie” phenomena that we commented on for l=1: the same 
songs would be repeatedly grouped and we would be unable 
to distinguish the correct co-occurrences from the accidental 
ones.  

In summary, it is interesting to compare this procedure to 
LSH in terms of how each approach handles hashing ap-
proximate matches.   LSH hashes only portions of the input 
vector to each of its multiple hashes.  Intuitively, the goal is 
to ensure that if the points differ on some of the dimensions, 
by using only a few dimensions per hash, similar points will 
still be found in many of the hash bins.  Our approach at-
tempts to explicitly learn the similarities and use them to 
guide the hash function. Further, our approach allows simi-
larity to be calculated on (potentially non-linear) transfor-
mations of the input rather than directly on the inputs.  The 
use of multiple hashes in the system used here is to account 
for the imperfect learning of a difficult similarity functions.   

4    Large Scale Experiments 

In this section, we conduct a large-scale test of the system.   
The trained networks are used to hash 1,300,000 snippets.  
In this experiment, we use 6500 songs and 200 snippets 
from each song.  As before, the snippets are of length 1.4 
sec (128 11.6-ms slices).   This spacing follows previous 
studies [Ke et al., 2005; Haitsma & Kalker, 2002].  Our 
snippets are drawn approximately 116 ms apart.  
 As with our previous experiments, for every query snip-
pet, we examine how many other snippets are considered as 
potential matches (the union of the l hashes), and also exam-
ine the number of times the top-ranked snippet came from 
the correct song.   For these experiments, we attempted 46 
different parameter settings, varying l and the number of 

bins per hash.  Table I shows the performance for 5 groups 
of desired numbers of candidates; the first row (< 0.15%) 
indicates that if we want the average query to examine less 
than 0.15% of the database, what accuracy we can achieve, 
and with which parameter settings.   In summary, we can 
find 1.4 sec snippets in a database of 6500 songs with 72% 
accuracy by using 222 bins and l=18 sets of hashes – while 
only examining 0.27% of the database per query.   

Beyond looking at the top match entry, Figure 8 demon-
strates that by examining the top-25 snippets that appeared 
in the most bins, there is a smooth drop-off in finding the 
correct song beyond simply examining the single most fre-
quently occurring snippet. Because the database contains 
200 snippets from each song, multiple snippets can be found 
for each query.  

Finally, we bring all of our results together and examine 
the performance of this system in the context of a longer 
song recognition system. We compare this system with a 
state-of-the art LSH-based system [Baluja & Covell, 2006], 
which extends [Ke et al., 2005] by allowing fingerprints to 
be coarsely sampled to lower the memory required to recog-
nize a large database of songs, while maintaining high rec-
ognition rates.  Ke’s system was an improvement over the 
de facto standard of [Haitsma & Kalker, 2002].   

For these experiments, we used s sec of a song (1.4 ≤ s ≤ 
25) and integrated the evidence from individual snippet 
lookups to determine the correct song.  Note that these ex-
periments are harder than the hardest of the cases expected 
in practice.  Figure 9 illustrates why: even though the 
[Baluja & Covell, 2006] system does not sample the data-
base snippets as closely, their sampling of the probe snip-
pets insures a database-to-nearest-probe misalignment of 
23.2 ms, at most, at each database snippet: at least one of the 

 Table I: Best Results for 0.15 – 0.55% Candidates 

Best 3 Results    (Accuracy, 2
Bins
, l (sets)) % Candidates 

    Examined top second third 

< 0.15% 56% (22,10) 37% (20,5) 36% (22,5) 

0.15 – 0.25% 69% (22,16) 66% (22,14) 62% (22,12) 

0.25 – 0.35% 72% (22,18)* 67% (20,14) 63% (20,12) 

0.35 – 0.45% 73% (20,18) 70% (20,16) 63% (16,5) 

0.45 – 0.55% 77% (20,22) 75% (20,20) 71%(18,16) 
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Figure 8: Song prediction for each of the 
top-25 matches.  Here,  position 1 = 72%, 
position 2=54%, position 25 = 8%. 



probes will be at least that close, since the probe density is 
46.4 ms.  By removing the matching snippet from the data-
base, our experiments force all database-to-probe misalign-
ments to be a full 116 ms, 5 times more than the closest 
sampling of [Baluja & Covell, 2006]. We do not rely on 
dense probe sampling to guarantee nearby (in-time) 
matches.  Results are shown in Table II. 

 
For the forgiving hasher, we use 222 bins & l=18 hashes.  

For the LSH system, we set the parameters individually for 
each trial to maximize performance while allowing ap-
proximately equal hash-table lookups.  Unlike [Baluja & 
Covell 2006], we count the candidates returned from each 
hash-table, not just the candidates that passed the hash-
voting thresholds and thereby triggered retrieval of the 
original fingerprint. We use this metric on the LSH system 
since under forgiving hashing, there is no retrieval of an 
original fingerprint. Each candidate simply has a counter 
associated with it; neither the spectrogram, nor a representa-
tion of the spectrogram, is ever compared with each candi-
date.  In summary, for our system, near perfect accuracy at 
even 5 sec. is achieved while considering only a tiny frac-
tion of the candidates.   

5 Conclusions & Future Work 

We have presented a system that surpasses the state of the 
art, both in terms of efficiency and accuracy, for retrieval in 
high-dimensional spaces where similarity is not well-
defined. The forgiving hasher ignores the small differences 
in snippets and maps them to the same bin by learning a 
similarity function from only weakly labeled positive exam-
ples.  The system is designed to work with video and images 
as well; those experiments are currently underway. 

Beyond further experiments with scale, there are many 
directions for future work. The number of bits trained per 
learner should be explored; by training only 1 bit, numerous 
binary classifiers become usable. To ensure high entropy for 

unseen songs, training with a song set that “spans” the space 
is desirable; this may be approximated by training learners 
with different songs.  Currently, the system handles ap-
proximate-match retrieval which is similar to handling 
noise. Tests are currently being conducted to quantify the 
resilience to structured and unstructured noise.  Finally, it 
will be interesting to test forgiving hashing on music-genre 
identification, where ‘similarity’ is even less well-defined. 
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Figure 9:  Sampling used to generate 
Table II.  The sampling used was chosen 
to test worst-case interactions between 
probe and database snippets.  For that 
table, each probe snippet is explicitly 
deleted from the database before snippet 
retrieval.  The result is the probe snippets 
are all 116 ms away from the nearest 
database snippet.  This test is more diffi-
cult than the sampling offsets for [Baluja 
& Covell 2006], since that system al-
ways encounters many snippets with 
small probe-database separations.  

 

a. Sampling used in this study b. Sampling used in [Baluja & Covell 2006] 

0

0 500 1000 1500 2000

0

0 500 1000 1500 2000

DB sampling 
116 ms 

DB - probe sep. 

probe sampling 
current probe 

116 ms 

116 ms 

DB sampling 

23.3 ms or less 

probe – DB sep. 

probe sampling 

928 ms 

46.4 ms 

Table II: Performance vs. Query Length (in seconds) 

(with sampling shown in Figure 9a) 

 1.4s 2s 5s 13s 25s 

Forgiving-Hash 72.3% 89.4% 98.9% 99.2% 99.5% 

LSH-System 35.5% 51.6% 73.0% 98.4% 98.6% 

 


