
Abstract

The problem of efficiently finding similar items in
a large corpus of high-dimensional data points
arises in many real-world tasks, such as music, im-
age, and video retrieval. Beyond the scaling diffi-
culties that arise with lookups in large data sets, the
complexity in these domains is exacerbated by an
imprecise definition of similarity. In this paper, we
describe a method to learn a similarity function
from only weakly labeled positive examples. Once
learned, this similarity function is used as the basis
of a hash function to severely constrain the number
of points considered for each lookup. Tested on a
large real-world audio dataset, only a tiny fraction
of the points (~0.27%) are ever considered for each
lookup. To increase efficiency, no comparisons in
the original high-dimensional space of points are
required. The performance far surpasses, in terms
of both efficiency and accuracy, a state-of-the-art
Locality-Sensitive-Hashing based technique for the
same problem and data set.

1 Introduction

This work is motivated by the need to retrieve similar audio,
image, and video data from extensive corpora of data. The
large number of elements in the corpora, the high dimen-
sionality of the points, and the imprecise nature of “similar”
make this task challenging in real world systems.

Throughout this paper, we ground our discussion in a
real-world task: given an extremely short (~1.4 second) au-
dio “snippet” sampled from anywhere within a large data-
base of songs, determine from which song that audio snippet
came. We will use our system for retrieval from a database
of 6,500 songs with 200 snippets extracted from each song,
resulting in 1,300,000 snippets (Figure 1). The short dura-
tion of the snippets makes this particularly challenging.

The task of distortion-robust fingerprinting of music has
been widely examined. Many published systems created to
this point attempt to match much longer song snippets, some
report results on smaller datasets, and others use prior prob-
abilities to scale their systems [Ke et al., 2005; Haitsma &
Kalker, 2002; Burges et al., 2003; Shazam, 2005]. We as-
sume a uniform prior and match extremely small snippets.

While our system can easily be incorporated into those de-
signed for longer snippet recognition, by testing on short
snippets we highlight the fundamental retrieval issues that
are often otherwise masked through the use of extra tempo-
ral coherency constraints made possible with longer snip-
pets. Further, we will demonstrate improved performance
on the retrieval of both short and long snippets.

1.1 Background

Generally stated, we need to learn how to retrieve examples
from a database that are similar to a probe example in a
manner that is both efficient and compact. One way to do
this is to learn a distance metric that (ideally) forces the
smallest distance between points that are known to be dis-
similar to be larger than the largest distance between points
that are known to be similar [Hastie & Tibrishani, 1996;
Shental et al., 2002; Bar-Hillel et al., 2002; Tsang et al.,
2005]. These methods can be used with k-nearest neighbors
(knn) approaches. knn approaches are well suited to our
task: They work with many classes and are able to dynami-
cally add new classes without retraining. Approximate knn
is efficiently implemented through Locality-Sensitive Hash-
ing (LSH) [Gionis et al., 1999]. LSH and other hash func-
tions are sublinear in the number of elements examined
compared to the size of the database.

LSH works for points with feature vectors that can be
compared in a Euclidean space. The general idea is to parti-
tion the feature vectors into l subvectors and to hash each
point into l separate hash tables, each hash table using one
of the subvectors as input to the hash function. Candidate

Learning “Forgiving” Hash Functions: Algorithms and Large Scale Tests

Shumeet Baluja & Michele Covell
Google, Inc.

1600 Amphitheatre Parkway, Mountain View, CA. 94043
{shumeet,covell}@google.com

Figure 1: A typical spectrogram and extracted snippets; note the
overlap. The task: given any snippet, find others from the same song.

neighbors can then be efficiently retrieved by partitioning
the probe feature vector and collecting the entries in the
corresponding hash bins. The final list of potential
neighbors can be created by vote counting, with each hash
casting votes for the entries of its indexed bin, and retaining
the candidates that receive some minimum number of votes,
vt. If vt = 1, this takes the union of the candidate lists. If vt =
l, this takes the intersection.

This idea has been extended by [Shakhnarovich, 2006] to
Parameter-Sensitive Hashing (PSH). To remove the Euclid-
ean requirement, PSH uses paired examples, both positive
(similar) and negative (dissimilar) to learn the l hash func-
tions that best cluster the two halves of each positive exam-
ple while best separating the two halves of each negative
example. This approach is closest to the one presented
here. One difference is the choice of learning constraints.
[Shakhnarovich, 2006] used positive examples (similar
pairs) and explicitly provided negative examples (dissimilar
pairs) to induce the learning algorithm to find a hash func-
tion. The unstated assumption is that any hash function that
adequately learns the negative examples will provide
(nearly) equal occupancy on the various hash bins so that
the validation step does not then process unpredictably large
numbers of potential neighbors. In our work, the learning
function is created using only weakly labeled positive ex-
amples (similar pairs) coupled with a forced constraint to-
wards maximum entropy (nearly uniform occupancy). We
do not explicitly create negative examples (dissimilar pairs),
but instead rely on our maximum-entropy constraint to pro-
vide that separation. As will be shown, our learning con-
straints have the advantage of allowing for similarities be-
tween only nominally distinct samples, without requiring
the learning structure to attempt to discover minor (or non-
existent) differences in these close examples.

The remainder of this paper is organized as follows. The
next section will describe the properties we need for learn-
ing a hash function, the training procedure and the analysis.
Section 3 shows how the system can be scaled to handle
large amounts of data. Section 4 demonstrates this con-
cretely on a real-world audio-retrieval task. Section 5 closes
the paper with conclusions and future work.

2 Learning Hash Functions

All deterministic hash functions map the same point to
the same bin. Our goal is to create a hash function that also
groups “similar” points in the same bin, where similar is
defined by the task. We call this a forgiving hash function
in that it forgives differences that are small with respect to
the implicit distance function being calculated.

To learn a forgiving hash function for this task, we need
to satisfy several objectives: (1) The hash function must be
able to work without explicitly defining a distance metric.
(2) The hash function must learn with only weakly labeled
examples; in our task, we have indications of what points
are similar (the song label), but we do not have information
of which parts of songs sound similar to other parts. (3)
The hash function must be able to generalize beyond the
examples given; we will not be able to train it on samples

from all the songs with which we expect to use it. Effec-
tively, this means that the learned function must maintain
entropy in the hashes for even new samples. Whether or not
the songs have been seen before, they must be well distrib-
uted across the hash bins. If entropy is not maintained,
points will be hashed to a small number of bins, thereby
rendering the hash ineffective.

The requirement to explicitly control entropy throughout
training is a primary concern. In the next section, we dem-
onstrate the use of a neural network with multiple outputs to
learn a hash function. Entropy is explicitly controlled by
carefully constructing the outputs of the training examples.
Other learning methods could also have been used; how-
ever, neural networks [Hertz et al., 1991; Pollack, 1990] are
suited to this task since, as we will show, controlling the
entropy of each output and between outputs (to reduce cor-
relation) is possible. The incremental training of the net-
work provides an opportunity to dynamically set the target
outputs to give similar songs similar target outputs.

2.1 Explicitly Maintaining Entropy in Training

We train a neural network to take as input an audio spectro-
gram and to output a bin location where similar audio spec-
trograms will be hashed. We represent the outputs of the
neural network in binary notation; for these experiments, we
create a hash table with 1024 bins and therefore train the
network with 10 binary target outputs.1

For training, we select 10 consecutive snippets from 1024
songs, sampled 116 ms apart (total 10,240 snippets). Each
snippet from the same song is labeled with the same target
song code. This is a weak label. Although the snippets that
are temporally close may be ‘similar’, there is no guarantee
that snippets that are further apart will be similar – even if
they are from the same song. Moreover, snippets from dif-
ferent songs may be more similar than snippets from the
same song. However, we do not require this detailed label-
ing; such labels would be infeasible to obtain for large sets.

The primary difficulty in training arises in finding suit-
able target outputs for each network. Every snippet of a
song is labeled with the same target output. The target out-
put for each song is assigned randomly, chosen without re-
placement from ()SΡ , where S is 10 bits – i.e., each song
is assigned a different set of 10 bits and ()SΡ is the power
set, containing 210 different sets of 10 bits. Sampling with-
out replacement is a crucial component of this procedure.
Measured over the training set, the target outputs will have
maximal entropy. Because we will be using the outputs as a
hash, maintaining high entropy is crucial to preserving a
good distribution in the hash bins. The drawback of this
randomized target assignment is that different songs that
sound similar may have entirely different output representa-
tions (large Hamming distance between their target outputs).
If we force the network to learn these artificial distinctions,
we may hinder or entirely prevent the network from being
able to correctly perform the mapping.

1 1024 is a small number of bins for a hash table that will hold millions

of items; in Section 2.3, we will show how to efficiently scale the size.

Instead of statically assigning the outputs, the target out-
puts shift throughout training. After every few epochs of
weight updates, we measure the network’s response to each
of the training samples. We then dynamically reassign the
target outputs for each song to the member from ()SΡ that
is closest to the network’s response, aggregated over that
song’s snippets. During this process, we maintain two con-
straints: all snippets from each song must have the same
output and no two songs can have the same target (so that
each member of ()SΡ is assigned once). This is a suitable
procedure since the specific outputs of the network are not
of interest, only the high-entropy distribution of them and
the fact that same-song snippets map to the same outputs.

By letting the network adapt its outputs in this manner,
the outputs across training examples can be effectively reor-
dered to avoid forcing artificial distinctions. Through this
process, the outputs are effectively being reordered to per-
form a weak form of clustering of songs: similar songs are
likely to have small Hamming distances in target outputs.
More details of a similar dynamic reordering can be found
in [Caruana et al., 1996]. The training procedure is summa-
rized in Figure 2. Figure 3 shows the progress of the train-
ing procedure through epochs and compares it to training
without output reordering2. Note that without reordering,
the smaller network’s performance was barely above ran-
dom: 5.4/10. The larger network without reordering per-
forms marginally better (5.6/10). However, both networks
trained with output reordering learn a mapping more consis-
tently than networks without reordering (7.0/10 and 7.5/10).

2.2 Using the Outputs as Hash-Keys

In this section, we take a first look at how the network’s
outputs perform when used as hash keys. There are two
metrics that are of primary interest in measuring perform-
ance: (1) the number of candidates found in each hashed bin
(that is, how many candidates must be considered at each

2 Standard back-propagation (BP) was used to train the networks [Hertz et
al., 1989]. Parameters for BP: learning rate 0.00025, momentum = 0.

lookup, indicating how well the candidates are distributed,
with respect to queries) and (2) the number of hashed bins
that include a snippet from the same song (indicating accu-
racy). In this section, we use a simple recall criterion: of the
snippets in the hashed bin, are any from the correct song.
Note that this is a very loose indicator of performance; in
Section 3, when we utilize multiple hashes, we will make
this constraint much tighter.

For these exploratory experiments, we trained 58 net-
works, 2 with 5 hidden units, 2 with 7 hidden units, etc, up
to 2 with 61 hidden units. Each was then used to hash ap-
proximately 38,000 snippets (drawn from 3,800 songs with
10 snippets each). These 3800 songs formed our test set for
this stage, and were independent from the 1024-song train-
ing set. For this test, we removed the query q from the da-
tabase and determined in which bin it would hash by propa-
gating it through the networks. After propagation, for each
of the 10 network outputs, if the output was greater than the
median response of that output (as ascertained from the
training set), it was assigned +1; otherwise, it was assigned
0. The median was chosen as the threshold to ensure that
the network has an even distribution of 0/+1 responses. The
10 outputs were treated as a binary number representing the
hash bin.

Figure 4 shows the total number of candidates (both cor-
rect and incorrect) found in the hashed bin (on average) as a
function of the number of hidden units in the network.
Figure 4 also shows the percentage of lookups that resulted
in a bin which contained a snippet from the correct song.
To understand Figure 4, the raw numbers are important to
examine. Looking at the middle of the graph, every query
on average was hashed into a bin with approximately 200
other snippets (~0.5% of the database). In ~78% of the re-
trievals, the hash bin contained a snippet from the correct
song. Note that if the hashes were completely random, we
would expect to find a snippet from the same song less than
1% of the time. Figure 4 also shows the negative effects of
poorer training on the small networks. Returning to Figure
3, we see that even with the output reassignment, the small
networks (“5 hidden”) lags behind the large networks (“59

SELECT M=2n songs and DEFINE B(t) = tth binary code
FOREACH (song Sm)
 │FOR (Xm iterations) { ADD snippet Sm,x to training set }
 │SELECT target Tm ∈ {0,1} n s.t. Tm1 = Tm2 ⇔ m1 = m 2
FOR (Idyn iterations)
 │TRAIN network for Edyn epochs (Edyn passes through data)
 │FOREACH (song Sm)

 │ │SET Am = Σx∈XmO(Sm,x) / Xm

 │ │ (where O(Sm,x) = actual network output for snippet Sm,x)
 │SET Ut = { t | 0 < t ≤ M} (the unassigned binary codes)
 │SET Us = {s | 0 < s ≤ M } (the unassigned songs)
 │FOR (M iterations)
 │ │FIND (s, t) = arg min s∈U

s
 ,t∈U

t
 || B(t) - As ||2

 │ │SET Ts = B(t)
 │ │REMOVE s from Us and REMOVE t from Ut

TRAIN network for Efixed epochs

Settings used:
n=10 M= 1024, Xm =10 (∀m), Edyn =10, Idyn =50, Efixed=500

 Figure 2: Training algorithm and parameter settings used.

Training Progress (Correct out of 10 bits)

4

4.5

5

5.5

6

6.5

7

7.5

8

1 80 159 238 317 396 475 554 633 712 791 870 949

Epoch

C
o
rr
e
c
t
O
u
tp
u
ts

Figure 3: Training with and without output reordering, for small and
large networks. Note that without output reordering, the number of
correct outputs ~5.6/10. With reordering, it approaches 7.5.

With Reordering
(59 hidden)

With Reordering
(5 hidden)

W/O Reordering
(59 hidden)

W/O Reordering
(5 hidden)

hidden”) by about ½ bit of accuracy. The effect of the
poorer training is seen in the larger number of candidates in
the hashed bin coupled with the small absolute change in
recall (from ~80% to ~76%) given by the networks with 5-9
hidden units (Figure 4). However, by using only networks
with 11 or more hidden units, we can reduce the number of
candidates by ~70% (from ~500 to ~150) with minor impact
on the recall rate (< 2%).

 In Figure 5, we compare the performance of using the
outputs of the networks trained with and without output
reassignment3, and using networks with random weights.
Note that using random weights is not the same as random
hashing; by passing snippets through the network, it will be
more likely to map similar snippets to the same bin; how-
ever, the weightings and combinations of the inputs will not
be tuned to the task. As can be seen in Figure 5, for every
lookup, there is a higher probability of finding a snippet
from the same song using the fully trained networks, over
networks with static-output training or with no training.

2.3 Using the Networks in Practice

In the previous section, we analyzed the performance of
each of the networks in terms of the average number of can-
didates in the hashed bins and the accuracy of lookups. In
this section, we combine the outputs of the networks to cre-
ate a large-scale hashing system. So far, each of the net-
works was trained with only 10 outputs, allowing 1024 bins
in the hash. A naïve way to scale the hash to a larger num-
ber of bins is to train the network with more outputs. How-
ever, because larger networks necessitate more training data,
this becomes computationally prohibitive.4

Instead, we use two facts: that training networks is a ran-
domized process dependent on the initial weights, and that
networks with different architectures may learn different
mappings. Hence, given that we have already trained multi-
ple networks, we can select bits for our hash from any of the
networks’ outputs. Numerous methods can be used to select
which outputs are used for a hash. We explored three meth-
ods of selecting the outputs: (1) random selection, (2) mini-

3 Fig. 3 provided a comparison of two training methods for two sizes
of networks. Fig. 5 shows the effects of using the outputs of networks,
trained with 3 methods, as hashes for the test data, as network size grows.

4 Depending on # of hidden units, training ranged from hours to days.

mum-correlation selection, and (3) minimum-mutual-
information selection. Both of the last two methods are
chosen in a greedy manner [Chow & Liu, 1969]. By ac-
counting for mutual information, we explicitly attempt to
spread the samples across bins by ensuring that the com-
bined entropy of the hash-index bits remains high. This
method had a slight advantage over the others, so this will
be used going forward.

We are no longer constrained to using only 10 bits since
we can pick an arbitrary number of outputs from the net-
work ensemble for our hash function. Figure 6 shows the
performance in terms of the number of candidates in each of
the hashed bins and correct matches, as a function of bits
that are used for the hash (or equivalently, the number of
total hash bins). Figure 6 also shows two other crucial re-
sults. The first is that by selecting the hash bits from multi-
ple networks, we decrease the number of candidates even
when using the same number of bins (1024). The number of
candidates in each hashed bin decreased by 50% - from 200
(Figure 3) to 90 (Figure 4, column 1). Second, when in-
creasing the number of bins from 1024 (210) to 4,194,304
(222), we see a decrease in the number of candidates from 90
to 5 per hashed bin. Although there is also a decrease in the
number of correct matches, it is not proportional; it de-
creases by ~50% (instead of decreasing by 94% as does the
number of candidates). In the next section, we describe
how to take advantage of the small number of candidates
and regain the loss in matches.

Training with and without reordering & random weights

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61

Hidden Units

%
 H
a
s
h
e
d
 B
in
s
 w
it
h
 C
o
rr
e
c
t
M
a
tc
h
e
s with

reordering

without
reordering

random
weights

Figure 5: Performance of training procedures. Measured by % of
queries finding the same song in the bin to which it is hashed. Avg #
of snippets examined per bin for the training w/reordering is: 174; for
static-output training: 123; and for random networks: 123.

Performance vs. Hash Bins

0

10

20

30

40

50

60

70

80

90

100

1,024 4,096 16,384 65,536 262,144 1,048,576 4,194,304

of Hash Bins

C
a
n
d
id
a
te
s
 F
o
u
n
d
 i
n
 H
a
s
h
e
d
 B
in

0%

10%

20%

30%

40%

50%

60%

70%

80%

Candidates
Matches

%
 H
a
s
h
e
d
 B
in
s
 w
it
h
 C
o
rr
e
c
t
M
a
tc
h
e
s

Figure 6: As we increase the number of bins by 4096×, the matches
decrease by 50%. Meanwhile, the candidates decrease from ~90 to ~5.

Performance vs. Hidden Units

0

100

200

300

400

500

600

5 11 17 23 29 35 41 47 53 61

Hidden Units

C
a
n
d
id
a
te
s
 F
o
u
n
d
 i
n
 H
a
s
h
e
d
 B
in

74%

75%

76%

77%

78%

79%

80%

81%

Candidates
Matches

%
 H
a
s
h
e
d
 B
in
s
 w
it
h
 C
o
rr
e
c
t
M
a
tc
h
e
s

Figure 4: Performance of networks in terms of candidates found in
hashed bin and % of queries finding matches from the same song in
the bin to which it is hashed.

3 A Complete Hashing System

From the previous sections, when a new query, q, arrives, it
is passed into an ensemble of networks from which select
outputs are used to determine a single hash location in a
single hash table. Analogous to LSH, we can also general-
ize to l hash tables, with l distinct hash functions. To do
this, we simply select from the unused outputs of the net-
work ensemble to build another hash function that indexes
into another hash table. Now, when q arrives, it is passed
through all of the networks. The outputs of the networks, if
they have been selected into one of l hashes, are used to
determine the bin of that hash. In Figure 7, we experiment
with the settings for l (1-22) and # of network outputs per
hash (10-22: 1024 – 4,194,304 bins per hash).
 In the previous section, we measured the recall as being
whether the hashed bin contained a snippet from the correct
song. Here, we tighten the definition of success to be the
one we use in the final system. We rank order the snippets
in the database according to how many of the l hash bins
provided by the l hashes contain each snippet. The top
ranked snippet is the one that occurs most frequently. We
declare success if the top snippet comes from the same song
as query q. Note we never perform comparisons in the

original high-dimensional spectrogram representation.
After passing through the networks, the snippet is repre-
sented by the quantized binary outputs: the original repre-
sentation is no longer needed.
 As can be seen in Figure 7A, the top line is the perform-
ance of the system with l=22 hashes; with only 1,024 bins,
the number of candidates is unacceptably large: over 2,000.
With smaller numbers of hashes (shown in the lower lines),
the number of candidates decreases. As expected, looking
towards the right of the graph, as the number of bins in-
creases, the number of candidates decreases rapidly for all
of the settings of l considered.
 Figure 7B provides the most important results. For the
top line (22 hashes), as the number of bins increases, the
ability to find the best match barely decreases – despite the
large drop in the number of candidates (Figure 7A). By
examining only 200-250 candidates per query (~0.6% of the
database), we achieve between 80-90% accuracy (l > 14).

In Figure 7B, note that for the lowest two lines (l=1,3), as
the number of bins increases, the accuracy rises – in almost
every other case, it decreases. The increase with l=1-3 oc-
curs because there are a large number of ties (many songs
have the same support) and we break ties with random se-

Figure 7: Performance of sys-
tems with (l=1..22) hashes, as a
function of the number of bins.

A: # of candidates considered
(smaller better).

B: % of times correct song iden-
tified (higher better).

B.

Unique Candidates Across All Hashes

Shown for System with l=1-22 Sets of Hashes

0

500

1000

1500

2000

2500

1,024 4,096 16,384 65,536 262,144 1,048,576 4,194,304

Hash Bins

U
n
iq
u
e
 C
a
n
d
id
a
te
s
 a
c
ro
s
s
 a
ll
 H
a
s
h
e
s

22

20

18

16

14

12

10

8

6

5

3

1

A.

Match in Top Position

Shown for System with l=1-22 Sets of Hashes

0%

25%

50%

75%

100%

1,024 4,096 16,384 65,536 262,144 1,048,576 4,194,304

Hash Bins

%
Q
u
e
ri
e
s
 w
it
h
 M
a
tc
h
 i
n
 T
o
p
 P
o
s
it
io
n

22

18

16

14

12

10

8

6

5

3

1

lection. As the number of snippets hashed to the same bin
decreases, the correct song competes with fewer incorrect
ties and has a higher chance of top rank.

Finally, in Figure 7A, note that as the number of hashes
increases, the number of candidates increases almost line-
arly. This likely indicates that the hashes are largely inde-
pendent. If they were not independent, the number of
unique candidates examined would overlap to a much
greater degree. If there was significant repetition of candi-
dates across the hashes, we would see the same “frequent-
tie” phenomena that we commented on for l=1: the same
songs would be repeatedly grouped and we would be unable
to distinguish the correct co-occurrences from the accidental
ones.

In summary, it is interesting to compare this procedure to
LSH in terms of how each approach handles hashing ap-
proximate matches. LSH hashes only portions of the input
vector to each of its multiple hashes. Intuitively, the goal is
to ensure that if the points differ on some of the dimensions,
by using only a few dimensions per hash, similar points will
still be found in many of the hash bins. Our approach at-
tempts to explicitly learn the similarities and use them to
guide the hash function. Further, our approach allows simi-
larity to be calculated on (potentially non-linear) transfor-
mations of the input rather than directly on the inputs. The
use of multiple hashes in the system used here is to account
for the imperfect learning of a difficult similarity functions.

4 Large Scale Experiments

In this section, we conduct a large-scale test of the system.
The trained networks are used to hash 1,300,000 snippets.
In this experiment, we use 6500 songs and 200 snippets
from each song. As before, the snippets are of length 1.4
sec (128 11.6-ms slices). This spacing follows previous
studies [Ke et al., 2005; Haitsma & Kalker, 2002]. Our
snippets are drawn approximately 116 ms apart.
 As with our previous experiments, for every query snip-
pet, we examine how many other snippets are considered as
potential matches (the union of the l hashes), and also exam-
ine the number of times the top-ranked snippet came from
the correct song. For these experiments, we attempted 46
different parameter settings, varying l and the number of

bins per hash. Table I shows the performance for 5 groups
of desired numbers of candidates; the first row (< 0.15%)
indicates that if we want the average query to examine less
than 0.15% of the database, what accuracy we can achieve,
and with which parameter settings. In summary, we can
find 1.4 sec snippets in a database of 6500 songs with 72%
accuracy by using 222 bins and l=18 sets of hashes – while
only examining 0.27% of the database per query.

Beyond looking at the top match entry, Figure 8 demon-
strates that by examining the top-25 snippets that appeared
in the most bins, there is a smooth drop-off in finding the
correct song beyond simply examining the single most fre-
quently occurring snippet. Because the database contains
200 snippets from each song, multiple snippets can be found
for each query.

Finally, we bring all of our results together and examine
the performance of this system in the context of a longer
song recognition system. We compare this system with a
state-of-the art LSH-based system [Baluja & Covell, 2006],
which extends [Ke et al., 2005] by allowing fingerprints to
be coarsely sampled to lower the memory required to recog-
nize a large database of songs, while maintaining high rec-
ognition rates. Ke’s system was an improvement over the
de facto standard of [Haitsma & Kalker, 2002].

For these experiments, we used s sec of a song (1.4 ≤ s ≤
25) and integrated the evidence from individual snippet
lookups to determine the correct song. Note that these ex-
periments are harder than the hardest of the cases expected
in practice. Figure 9 illustrates why: even though the
[Baluja & Covell, 2006] system does not sample the data-
base snippets as closely, their sampling of the probe snip-
pets insures a database-to-nearest-probe misalignment of
23.2 ms, at most, at each database snippet: at least one of the

 Table I: Best Results for 0.15 – 0.55% Candidates

Best 3 Results (Accuracy, 2
Bins
, l (sets)) % Candidates

 Examined top second third

< 0.15% 56% (22,10) 37% (20,5) 36% (22,5)

0.15 – 0.25% 69% (22,16) 66% (22,14) 62% (22,12)

0.25 – 0.35% 72% (22,18)* 67% (20,14) 63% (20,12)

0.35 – 0.45% 73% (20,18) 70% (20,16) 63% (16,5)

0.45 – 0.55% 77% (20,22) 75% (20,20) 71%(18,16)

Matches to Correct Song in Each of the Top-25 Positions

72

54

40

32

27
24

21
19

17 16 15 14 13 13 12 11 11 11 10 10 9 9 9 8 8

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25

Position

%
 C
o
rr
e
c
t
M
a
tc
h
e
s

Figure 8: Song prediction for each of the
top-25 matches. Here, position 1 = 72%,
position 2=54%, position 25 = 8%.

probes will be at least that close, since the probe density is
46.4 ms. By removing the matching snippet from the data-
base, our experiments force all database-to-probe misalign-
ments to be a full 116 ms, 5 times more than the closest
sampling of [Baluja & Covell, 2006]. We do not rely on
dense probe sampling to guarantee nearby (in-time)
matches. Results are shown in Table II.

For the forgiving hasher, we use 222 bins & l=18 hashes.

For the LSH system, we set the parameters individually for
each trial to maximize performance while allowing ap-
proximately equal hash-table lookups. Unlike [Baluja &
Covell 2006], we count the candidates returned from each
hash-table, not just the candidates that passed the hash-
voting thresholds and thereby triggered retrieval of the
original fingerprint. We use this metric on the LSH system
since under forgiving hashing, there is no retrieval of an
original fingerprint. Each candidate simply has a counter
associated with it; neither the spectrogram, nor a representa-
tion of the spectrogram, is ever compared with each candi-
date. In summary, for our system, near perfect accuracy at
even 5 sec. is achieved while considering only a tiny frac-
tion of the candidates.

5 Conclusions & Future Work

We have presented a system that surpasses the state of the
art, both in terms of efficiency and accuracy, for retrieval in
high-dimensional spaces where similarity is not well-
defined. The forgiving hasher ignores the small differences
in snippets and maps them to the same bin by learning a
similarity function from only weakly labeled positive exam-
ples. The system is designed to work with video and images
as well; those experiments are currently underway.

Beyond further experiments with scale, there are many
directions for future work. The number of bits trained per
learner should be explored; by training only 1 bit, numerous
binary classifiers become usable. To ensure high entropy for

unseen songs, training with a song set that “spans” the space
is desirable; this may be approximated by training learners
with different songs. Currently, the system handles ap-
proximate-match retrieval which is similar to handling
noise. Tests are currently being conducted to quantify the
resilience to structured and unstructured noise. Finally, it
will be interesting to test forgiving hashing on music-genre
identification, where ‘similarity’ is even less well-defined.

References

[Baluja & Covell, 2006] S. Baluja, M. Covell. Content Fingerprinting with
Wavelets. Third Conference on Visual Media Production (CVMP).
[Bar Hillel et al., 2003] A. Bar-Hillel, T. Hertz, N. Shental, D. Weinshall.
Learning Distance Functions using Equivalence Relations. International
Conference on Machine Learning.
[Burges et al., 2003] J. C. Burges, J. C. Platt, S. Jana. Distortion Discrimi-
nant Analysis for Audio Fingerprinting. IEEE Trans. Speech and Audio
Processing, vol. 11.
[Caruana et al, 1996] R. Caruana, S. Baluja, T. Mitchell. Using the future
to "sort out" the present: Rankprop and MTL. Neural Information Process-
ing Systems 8.
[Chow & Liu, 1968] C. Chow, C. Liu. Approximating discrete probability
distributions via dependence trees. IEEE Trans. Info. Theory, vol. IT-14.
[Gionis et al., 1999] A Gionis, P. Indyk, R. Motwani. Similarity search in
high dimensions via hashing. 25th Very Large Data Base Conference.

[Haitsma and Kalker, 2002] J. Haitsma, T. Kalker. A Highly Robust Audio
Fingerprinting System. International Conference on Music Information
Retrieval.

[Hastie & Tibshirani, 1996] T. Hastie, R. Tibshirani. Discriminant Adap-
tive Nearest Neighbor, IEEE PAMI, vol. 18.

[Hertz et al., 1991] J. Hertz, A. Krogh, R. Palmer. Introduction to the The-
ory of Neural Computing (Addison-Welsey).
[Ke et al., 2005] Y. Ke, D. Hoiem, R. Sukthankar. Computer Vision for
Music Identification, Computer Vision and Pattern Recognition.

[Pollack, 1990] J.B. Pollack. Recursive Distributed Representations, Artifi-
cial Intelligence, vol. 46.

[Shakhnarovich, 2006] G. Shakhnarovich. Learning Task Specific Similar-
ity. Ph.D. Thesis, MIT.
[Shazam, 2005] Shazam Entertainment
http://www.shazamentertainment.com

[Shental et al., 2002] N. Shental, T. Hertz, D. Weinshall, M. Pavel. Ad-
justment Learning and Relevant Component Analysis. ECCV.

[Tsang et al., 2005] I. W. Tsang, P.-M. Cheung, J. T. Kwok. Kernel Rele-
vant Component Analysis for Distance Metric Learning. IJCNN.

Figure 9: Sampling used to generate
Table II. The sampling used was chosen
to test worst-case interactions between
probe and database snippets. For that
table, each probe snippet is explicitly
deleted from the database before snippet
retrieval. The result is the probe snippets
are all 116 ms away from the nearest
database snippet. This test is more diffi-
cult than the sampling offsets for [Baluja
& Covell 2006], since that system al-
ways encounters many snippets with
small probe-database separations.

a. Sampling used in this study b. Sampling used in [Baluja & Covell 2006]

0

0 500 1000 1500 2000

0

0 500 1000 1500 2000

DB sampling
116 ms

DB - probe sep.

probe sampling
current probe

116 ms

116 ms

DB sampling

23.3 ms or less

probe – DB sep.

probe sampling

928 ms

46.4 ms

Table II: Performance vs. Query Length (in seconds)

(with sampling shown in Figure 9a)

 1.4s 2s 5s 13s 25s

Forgiving-Hash 72.3% 89.4% 98.9% 99.2% 99.5%

LSH-System 35.5% 51.6% 73.0% 98.4% 98.6%

