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Abstract—Current Google image search adopt a hybrid search
approach in which a text-based query (e.g., “Paris landmarks”) is
used to retrieve a set of relevant images, which are then refined
by the user (e.g., by re-ranking the retrieved images based on sim-
ilarity to a selected example). We conjecture that given such hy-
brid image search engines, learning per-query distance functions
over image features can improve the estimation of image similarity.
We propose scalable solutions to learning query-specific distance
functions by 1) adopting a simple large-margin learning frame-
work, 2) using the query-logs of text-based image search engine to
train distance functions used in content-based systems. We eval-
uate the feasibility and efficacy of our proposed system through
comprehensive human evaluation, and compare the results with
the state-of-the-art image distance function used by Google image
search.

Index Terms—Image search, image processing, content based re-
trieval, search engine, distance learning.

I. INTRODUCTION

E STIMATING image distances is central to all content-
based image retrieval systems. Commonly used distance

functions for image retrieval include Euclidean distance and
Earth Mover distance [27]. In some cases, distance functions
are learned from data [39], [37]. Such methods have been gen-
erally adopted to learn a single distance for all images in the
training data.
This work studies the problem of learning distance functions

to be used in a hybrid image retrieval systems such as the one
used by Google image search. Shown in Fig. 1, such systems
adopt a hybrid search approach in which a text-based query
(e.g., “Paris landmarks”) is used to retrieve a set of relevant
images, which are then refined by the user (e.g., by re-ranking
the retrieved images based on similarity to a selected example).
Unlike standard content-based image retrieval system, the goal
is not to retrieve an similar image from a common set of images
from the Web, but rather to re-rank the query-specific search
results produced by a text query. For this reason, the same query
image can produce different similar images depending on the
context of the text query (concrete example retrieval results can
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Fig. 1. Google or Bing images adopt a hybrid search approach in which a text-
based query (e.g., “Paris Landmarks”) is used to retrieve a set of relevant images,
which are then refined by the user (e.g., by re-ranking the retrieved images based
on similarity to a selected example).

be seen using the following two link-shortener: goo.gl/gSRVN
and goo.gl/xtZbN). Therefore, we are interested in learning
query-specific distance functions. Similar observation has made
for exemplar-specific distance functions [11].
The motivation for learning query-specific distance functions

stems from our hypothesis that the appropriate choice of feature
depends upon the query. For example, consider the problem of
identifying a photo of Eiffel Tower. If the query is “Paris land-
marks” as shown in Fig. 2(a), then shape feature will be valu-
able as it differentiates Eiffel tower more clearly from other ar-
chitectural structures. On the other hand, if the query is “Eiffel
Tower” as shown in Fig. 2(b), then color feature would be rela-
tively more useful than shape. Since the context (e.g., the query
“Eiffel Tower”) is expected to already restrict the images to the
correct landmark, themeasure of similarity should instead group
the images on a less constrained dimension, such as time-of-day,
as the color distribution corresponding to time of day.
This work proposes a simple query-specific distance learning

framework: 1) the system groups training images and meta-data
by their associated text labels, 2) the system learns the optimal
distance function from each group of training data using large-
margin formulation introduced by [30]. This learning frame-
work can be easily implemented using parallel computational
MapReduce [9] framework. Once learned, the distance func-
tions are indexed together with the images annotated with the
specific text-query.
Our work is partially inspired by Frome et al. [11], who

proposed to learn local distance function for each image ex-
emplar. Such exemplar-specific distance functions, however,
are computationally expensive for large-scale Web image
retrieval. Therefore, based on the observation that search query
frequency follows power law distribution [29], we believe
query-specific distance functions can be applied to only the
most popular search queries and still service large portion of
the overall search engine traffic.
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Fig. 2. Top search results with the query Paris landmarks and Eiffel Tower.
(a) Paris landmarks. (b) Eiffel Tower.

This work focuses on addressing two questions related to
learning query-specific distance functions for large-scale Web
image search.
1) How can we collect sufficient amount of labelled
training data to learn distance function for each
query? Standard methods to collect training labels, such
as manual labelling and relevance feedback, are costly as
they require active human participation, and the resulting
annotations are usually insufficiently descriptive of the
image contents [23].

2) Does learned query-specific distance functions sig-
nificantly improve the estimation of image similarity
from the perspective of human raters? Note that due
to the added degrees of freedom, using query-specific
function will, in many situations (especially when training
and testing data are drawn from the same underlying
distribution), produce more accurate image comparisons
than query-independent distances. Therefore, any analysis
needs to be conducted in a way such that evaluation
method are not directly tied to how training data is
produced.

This workmakes the two contributions. First, we demonstrate
that user click-patterns made on text-based search engine (e.g.,
Google image search) can be used to train content-based image
distance functions. As text-based search engines attract large
user traffic, such “transfer” of labelled data to train content-
based retrieval system makes it possible to apply supervised

metric learning techniques such as [30], [11] to large number
of Web queries and images. Although learning from click-data
has been explored previously [18], [30], [16], there is very little
work on learning image distances from an open and uncon-
strained text-based system, on which users do not have a pre-
defined guideline on tasks to accomplish. For example, the im-
ages clicked by a casual surfer may not exhibit any semantic or
visual relations at all. This work conducted a detailed study in
order to verify that, by aggregating the query sessions made by
large number of Web users, the averaged click-patterns largely
reflect the results of perceptual similarity test.
The second contribution of this work is a comprehensive

study on the feasibility and effectiveness of query-specific
distance functions for Web image search. This work ap-
plies distance learning technique introduced in [30] to learn
query-specific distance function from click-data derived from
text-based search engines. Our method is more scalable than
previously proposed exemplar-specific distance functions
[11] when applied to large-scale Web search. Our work also
demonstrated that learning query-specific image distances pro-
duces more accurate measurement of image similarity than the
state-of-the-art Google similar image search system. Specifi-
cally, we conducted two types of experiments: 1) perceptual
experiments [6] that compare estimated image similarity with
those derived from judgement of human raters, 2) target-search
experiments [24] that measure users’ efficiency in finding the
relevant images using various distance functions. Our results
demonstrate that query-specific distance functions outperform
the L2 distance function used Google image search. The dif-
ference in accuracy is especially significant given polysemy
queries.1

The rest of the paper is divided into six sections. Section II
introduces related works in learning distance functions for
Web image retrieval. Section III proposes methods to derive
measurement of image similarity from text-based image-search
query logs, and then use this information as training data.
Section IV introduces methods to learn query-specific distance
functions. Sections V and VI present evaluation results with
perceptual similarity and target-search experiments respec-
tively. Section VII presents the conclusions and future work.

II. RELATED WORK

Our work is mainly related to two areas of research. The first
area is related to distance learning research in machine learning,
and the second is related to exploring log data as relevance feed-
back in Web search. This work briefly reviews some represen-
tative works in both areas.

A. Learning Distances

In spite of the observation [26] that human perception some-
times cannot satisfy triangular equality, distance metrics, such
as Euclidean distance, have been used extensively in large-scale
Web image retrieval systems for its simplicity and efficiency
[32], [8]. Methods to improve the accuracy of Euclidean dis-
tance has been proposed previously, including unsupervised
learning techniques such as Metric Multidimensional Scaling,

1Polysemy queries are keywords with multiple semantic interpretations such
as apple.
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Locally-Linear Embedding, Isomap, Pyramid Match Kernel
[12], and supervised distance learning techniques [38], [30],
[36], [11] that learn a weighted Euclidean distance function.
Previous work in learning weighted Euclidean distance func-

tions differ in how training samples are collected and how they
formulate the optimization. For example, Xing et al. [38] learns
a weight vector that minimizes the number of violated con-
straints in the training data, structured in the form of pairwise
comparisons (“A and B are similar”). Schultz [30] adopted an
optimizing approach that is analogous to a soft-margin SVM
trained with relative comparison (“A is more similar to B than A
to C”). In these approaches, a single distance function is learned
and used to compare all images in the database. In contrast, our
work studies metric learning in the context of hybrid image re-
trieval system, and proposes to adopt the learning approach in
[30] to learn query-specific distance functions.

B. Use of Search Engine Logs

The use of logged search data as a form of relevance feed-
back [40], [28] has been explored previously by Web informa-
tion retrieval and content-based image retrieval communities
[18], [30], [16], [22], [14], [2]. Joachims [17] conjectured that
click-through statistics often convey judgment of document rel-
evance with respect to the query, and confirmed this hypothesis
with an eye-tracking study [18]. Uchihashi et al. [35] proposed a
content-free image retrieval system entirely based on modeling
the click statistics of the image retrieval systems through col-
laborative filtering [14] techniques. Radlinski et al. [22] demon-
strated that click-through data is not reliable for deriving abso-
lute relevance judgment as it is affected by the retrieval quality
of the underlying system, but relative comparisons (“A is more
relevant to the query than B”) are reasonably accurate. Schultz
et al. [30] proposed to learn a ranking function from co-click
statistics for Web document retrieval, and Jain et al. [16] ap-
plied similar techniques to the retrieval of Web images.
Our work is also related to the work by Hoi et al. [15], who

demonstrated that the click patterns made by users of content-
based image retrieval system can be used as relevance feedback
signals to refine image distance function. This work has several
key differences compared with [15]. First, the training data used
in this work is in the form of relative comparison, as opposed to
“relevant” or “irrelevant” labels. Second, this work proposes to
learn a unique distance function for each query, as opposed to a
global distance for all images. Third, this work derives training
data from text-based image retrieval system. This approach al-
lows us to leverage large quantities of feedback data from pop-
ular incumbent Web retrieval system, and to improve the per-
formance of new system that may not have sufficient relevance
feedback data of its own.

III. MEASURE IMAGE SIMILARITY WITH CO-CLICK STATISTICS

A search session [19] starts when the user initiates an image
search task (perhaps by typing the URL of a commercial search
engine), and ends when the user leaves the search engine, or
no longer actively searches on the site. During this time, users
usually have viewed a large set of images, and may have clicked
on one ormore images that satisfy his or her search criteria. Such
browsing behaviors are recorded as a part of the image search
engine query logs. In a single image search session, if image

Fig. 3. Image is more similar to query image than image is to .

and image are both clicked by the user, we say they are
co-clicked.
This work studies whether two images that are co-clicked

more often are more similar to each other than to a third image
co-clicked less often. The intuition is that when conducting
an image retrieval task, many users have a pre-determined
mental image of what they are looking for. Therefore, during
the process of browsing through the search results, users may
conduct an implicit comparison between the images retrieved
with the target image. Only images similar to the target image
are selected while others are seen but ignored. Therefore if
we aggregate the co-click statistics over all search sessions
conducted within a sufficient period of time, then images that
are clicked more often are more similar to each other. Our goal
is to derive reliable measurement of image similarity from such
aggregated co-click statistics, and use it to train query-specific
distances.
One can imagine several situations when such hypothesis is

not true. For example, a person may not have concrete search
criteria (e.g., casual browsing) or the search criteria may change
over time. In this case, the images clicked may not exhibit any
semantic or visual relationships at all. The hope is that by ag-
gregating the query sessions made by billions of Web users, the
distinctive click patterns may emerge to capture how majority
of the people perceive image similarities.

A. Image Comparison With Co-Click Statistics

In this work, we propose to derive relative comparisons
(“image A is more similar to image B than A is to C”)
from co-click statistics, and use such information to learn
query-specific distance functions. In contrast with with pair-
wise comparisons (e.g., “image A is similar/dissimilar to
B”), relative comparisons is context-dependent, and contain
richer set of information that can be used to derive the relative
ordering of the images. For example, given the three images
shown Fig. 3, although both image and are related to the
image (e.g., all Paris landmarks), most would agree that
is more similar to than is to .
One can use co-click statistics as absolute and quantitative

measurements of pairwise similarity to compare or rank images.
For example, given a query image and two candidate images
and , one can determine which candidate image is more

similar to the query image with the following equation:

if
otherwise

(1)

where is the number of search sessions where image
and are co-clicked. Adopting (1) for image comparison

assumes that we have accurate measurement of pairwise dis-
tances (or similarity). However, as this work proposes to derive
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Fig. 4. The correlation between co-clicks between two images and their re-
spective position in the search results. The point on the two dimensional
plot represents the average amount of co-clicks received by images with
and as their respective position in the search results. On average, the like-

lihood of a user click on an image tends to decreases as the rank increases.

image similarity from user click-patterns, the order in which im-
ages are presented to the user can significantly affect whether
the likelihood of images being clicked by the users.
For example, Fig. 4 illustrates the position bias by showing

the correlation between co-clicks between two images and their
respective position in the search results, generated by averaging
the co-click statistics generated from the top 1000 search results
produced by 40 popular queries on Google image search. The
point on the two dimensional plot represents the
average amount of co-clicks received by images with and
as their respective position in the search results given a set of
popular queries. On average, the likelihood of a user click on
an image tends to decreases as the rank increases. Such position
bias is due to the well document tendency [17], [7] for search en-
gine users to exist search when the first relevant image is found,
regardless of whether there is a more or equally relevant images
positioned further down in the list of search results.
To address this problem, we proposes to incorporate the av-

erage position of the images into the comparison function. This
is based on the observation that, when a ranked list of Web doc-
uments are presented to the Web search users, documents that
are clicked on are more semantically relevant to the query than
those that are observed but not clicked on [17]. In the absence
of information on what documents users have observed, a com-
monly used assumption is that user examine search results se-
quentially and therefore all the documents ranked ahead of the
last clicked document is considered observed. For example, in
Fig. 5(a), the documents that are clicked are highlighted. One
can reasonably expect that document 2 and 4 are observed but
not clicked.
We extend this intuition to the domain of image search: im-

ages that are clicked more frequently are more similar to each
other than those ranked higher but clicked less frequently. The
process of labeling image triplets contains the following two
steps: first, we count the number of search sessions where a pair
of images is co-clicked, denoted as for image and
. Note that is aggregated over all possible queries.

Next, we computed the average position of each image relative

Fig. 5. An example of Web/Image search results. Web documents or images
that are clicked on by the user during a search session are highlighted. We can
reasonably expect that those images (or documents) ranked ahead of the clicked
images (or documents) are observed but not clicked. (a) Web search. (b) Image
search.

to other images in the same query during the time the data is col-
lected. In this work, we refer the average position for the image
given query as , where when

is ranked ahead of . Note that the position of the images are
query-dependent.
The resulting relative comparison function is shown below,

if ,

if ,

otherwise

(2)

If the position-constraints is not satisfied, then the function will
output , indicating that we do not have sufficient information to
determine which of the candidate images is similar to the query
image. We apply (2) to all permutations of image triplets , ,
sampled from the images produced by query . We remove

the triplets when image comparison cannot be reliably estimated
from the co-click statistics (labeled with ).
One can also combine co-click statistics with other types of

distances, such as Euclidean distance (L2) derived from image
features, using the following equation:

if
,

or ,

otherwise

(3)

where is L2 distance computed over image features.
Comparing with (2), (3) combines co-click statistics with the
distances produced using L2 distance over image features when
the rank constraint is satisfied, otherwise only L2 distance is
used.
As Web search engines typically do not have control over

how a user may interpret the search results and interact with the
retrieval system, it is possible that the images clicked may not
exhibit any semantic or visual relationship at all in some search
sessions. Our hope is that despite the subjectivity in human
perception of image similarity, one can still find distinctive
click patterns for subsets of queries and images that capture
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how majority of the people perceive image similarity. For
this reason, instead of considering image triplets generated
from each search session as a separate measurement of image
similarity, we use the aggregated statistics over 1-year worth of
image search query logs.

IV. LEARNING QUERY-SPECIFIC DISTANCE
FOR WEB IMAGE SEARCH

Our goal is to learn a weighted Euclidean distance for
each query . Each query is associated with a set of images
and is represented by a dimensional feature vector

. We define the query-specific Euclidean
distance between image and

(4)

where is a dimensional weight vector over the features.
Given a training set of relative comparisons, our goal

is to learn the weight vector over the features such that the
training error (i.e., the number of violated constraints) is mini-
mized. Using the training image triplet shown in Fig. 3 as an ex-
ample: it is clear that image should be considered more sim-
ilar to image than is to . The learning goal is to find dis-
tances between images such that relationships of this type holds,
for example, that the distance . Of
course, if all our served results images are from the training set,
then we don’t need the distance functions at all; we can simply
rank images based on the comparison based on co-click sta-
tistics. However, such supervised information typically is not
available for all image triplets in the database (due to the posi-
tion bias), and it is certainly not available for new images.
Following [30], finding a solution with minimal training

error is equivalent to finding a that fulfills the following
constraint.

(5)

As the solution is typically not unique, learning methods have
been proposed to select W, such that the learned distance re-
mains as close to an un-weighted Euclidean distance as possible.
Following [30], we adopt the max-margin framework that mini-
mizes the norm of weight vector . This leads to the following
optimization problem:

(6)

(7)

where . Compared with standard
quadratic programming such as SVM, this optimization has an
additional constrain on , which needs to be positive such that
it meets triangle inequality of distance. We add slack variables

to each triplet to account for constrains that cannot be sat-
isfied, we then get the following optimization problem:

(8)

where the scalar is the trade-off parameter between the em-
pirical loss term and the regularization term. The form in (8)
is similar to the soft-margin SVM. We solve this optimization
problem using sub-gradient method based on [33]. This method
does not directly depend on the number of training samples and
is very fast in practice.

V. EXPERIMENT I

A. Perceptual Similarity Test

This work adopts an evaluation approach that first asks
human raters to compare sets of images, and apply the re-
sulting human ratings as labels to evaluate a particular distance
function. Such perceptual similarity experiments have been
proposed previously [5], [31] to evaluate content-based image
retrieval systems.
Typically human raters are asked to compare sets of images

and assign either an quantitative similarity score to a pair of im-
ages (e.g., image A and B are very similar) or qualitative and
relative comparisons (e.g., image A is more similar to image
B than image A to C). Compared with alternative approaches,
such as using class labels or image annotations, this perceptual
comparison test is closely related to the task at hand (e.g., com-
parison and ranking of images).
This work uses a variation of relative comparison test [5] as

shown in Fig. 6. The query image is displayed at the top and
two candidate images are displayed at the bottom of the screen.
Human raters are instructed to indicate which of the two can-
didate images is more similar to the query image. As candidate
images can all be similar or dissimilar to the query image, the
experiment also allows users to select cannot decide. Also, since
the perception of image similarity can be subjective with respect
to the experiences of the raters, we assign each sets of images to
multiple raters, and only consider images with consistent label
from all raters. Therefore, we propose to measure the accuracy
of a distance function by comparing its output with rater selec-
tion on the testing images.
Note that due to the added degrees of freedom, using query-

specific distance functions will, in many situations (especially
when training and testing data are drawn from the same under-
lying distribution), produce more accurate image comparisons
than query-independent distances. Therefore, this experiment is
conducted in a way such that evaluation method (e.g., percep-
tual comparison test) are not directly tied to how training data
is produced (e.g., co-click statistics in Web image search).

B. Methodology

1) Sampling Queries From Image Search Logs: We selected
queries belonging to four categories of visual concepts, person,
product, animals and places, as these categories containmany of
the most frequent terms people use to query commercial image
search engines. Also, as such categories usually have distinctive
visual appearances, they are commonly used as a part of bench-
mark database for evaluation of recognition systems [13], [10].
We also included a fifth category referred as polysemy, which
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Fig. 6. The triplet rating interface. Users are asked to select the image (A or B)
more similar to the query image.

TABLE I
A LIST OF 50 (44 UNIQUE) QUERIES WERE SAMPLED FROM A SET
OF 10,000 MOST POPULAR QUERIES ON GOOGLE IMAGE SEARCH

are queries with multiple semantic and visual concepts. For ex-
ample, the query apple produces images related to both the com-
pany and the fruit. We conjecture that ranking based on image
similarity is mostly helpful on the search results retrieved with
such ambiguous queries.
We selected 10 queries for each category with the following

selection methodology: first, we collected 10,000 of the most
frequently searched for queries on Google images during the
month of July 2010; second, we uniformly sample queries from
this list, and manually assign each query to one of the five cat-
egories illustrated above. A query is removed from considera-
tion if it does not fall into any of the five category, or if the re-
trieved images contain pornography or other inappropriate con-
tent. This process is repeated until each category contains 10
queries. The complete list of queries are shown in Table I.
2) Sampling Image Triplets From Search Results: Given

each query, we extracted the top 100 search results from Google
image search, with the strict safe search filter. The top 100 im-
ages are used instead of the 1000 images due the following two
considerations: first, we observed that the relevance between
the retrieved images and text query degrades significantly be-
yond the top 100 results retrieved from Google images; second,
as users usually follow the order in which search results are
presented to them, they are more likely to select a query image
from the top search results to conduct hybrid image retrieval.
We randomly sampled 25 testing images from the top 100

search results. Since 2300 unique combinations image triplets
(25-choose-3) can be sampled from the testing images, and each
of image in a triplet can be the query image, there are 6900 pos-
sible testing image triplets. We randomly sampled 1000 (14.5%

of 6900) image triplets and have them labeled by the human
raters.
3) Experiment User Interface and Procedure: The interface

is shown in Fig. 6. For each query, we partition the 1000 triplets
into 20 triplet groups, and each group is presented to three dif-
ferent human raters for labeling. 7 raters participated in this ex-
periment, each rater spent 4 hours a day (50 minutes rating-time
with 10 minutes rest-time) for a total of 10 business days. We
only consider testing images that received consistent labels from
the three raters.

C. Experiment Results

This section presents a set of experiments designed to eval-
uate the quality of the relative comparisons generated from the
query logs and the accuracies of distance learned from such in-
formation. We used the click-data recorded for the entire year of
2008 from Google image search. Note that this is before Google
introduced the “hybrid search” functionality with visual simi-
larity. For this reason, the click-data used in our experiment is
derived from open and unconstrained text-based image system.
Since the image search results do not change significantly within
a short period of time, we sampled the query-based ranking of
the images at the beginning of eachmonth, and then compute the
average ranking of image within the text query according
to the following formula: , where

is the position of image in the results list produced by
query at the beginning of the month .
The testing images are collected with the procedure listed

in Section V-B. We used Google-L2 distance function as
benchmark for comparison. Google-L2 distance is a highly
optimized distance function over the image features used by
Google Similar Images.
1) Analysis 1: Examples of Results: Fig. 7 contains a sample

of testing triplets. In particular, it contains triplets such that
the comparison decision derived from co-click statistics dis-
agrees with those derived by applying Euclidean distance over
the image features. Each numbered row represents a testing
triplet. For each triplet, the first image is the query image and
the second and third image are candidate images. The candidate
images are arranged such that the second image is more sim-
ilar to the query image based on the Google-L2, and the third
image is more similar based on co-click statistics using (2). In
order to not “double-count” polysemy queries, we removed pol-
ysemy queries from People, Product, Animal and Places when
computing the averages for each category.
We observe that Google-L2 distances are sufficiently accu-

rate when two images contain the same objects (row 1, 2, 3,
5, 20) or share dominant visual cues (4, 6, 7). Co-click simi-
larities are less accurate in such cases—indicating that images
clicked during a search session are likely to be semantically and
visually similar only up to a point. Images that are duplicate or
near-duplicate of each other are not necessarily the most fre-
quently clicked pair during a search session. On the other hand,
when a particular visual concept (such as apple logo) has high
intra-class variance with respect to the image features, co-click
statistics tends to be more accurately capture the semantic sim-
ilarity among the images (8 – 15, 16, 17, 18, 19, 21, 22, 23). It
is our hope that by learning feature weights from the co-click
statistics, those most discriminative features in this query, such
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Fig. 7. A sample of testing triplets where comparison results derived from
co-click statistics disagree with those based on applying Euclidean distance over
the image features.

Fig. 8. The accuracy of co-click statistics (Coclick) v.s. image distances (L2),
and combined co-click and image distances (Coclick+L2).

as shape of the logo, are likely to have more weights over other
features (color, etc.).
2) Analysis 2: Accuracy of Co-Click Statistics: Fig. 8 com-

pares the accuracy of co-click statistics with other measurement
of image similarity such as Euclidean distance over image fea-
tures. In order to compute the ROC curves, we a threshold to
(2) and (3), such as in (1). By ad-
justing , we can get various operating points. Google-L2 rep-
resents the highly optimized distance function used by Google
Similar Images. Coclick represents comparison with (2); and
Coclick+L2 compares images using a combination of co-click
statistics and Google-L2 distance derived from image features
using (3), where the distances are mean/variance normalized.
We scaledGoogle-L2 andCoclick such that they have the same
variance with approach similar to [11]. To ensure that one can
fairly compare Coclick with three outcomes (e.g., , , )
with the other two methods with two outcomes (e.g., , ),
we removed all the testing data where the output of co-clicks
resulted in from evaluation (2).
Fig. 8 shows that when used separately, for all categories of

queries other than polysemy,Google-L2 distance is more accu-
rate than co-click statistics. There are three likely reasons for

such results: first, Google-L2 distance, used by Google Similar
images, is highly optimized over the image features; Second, the
perceptual similarity test we used to obtain the labels (“which
of the image is more similar to the query image”) is conducted
without giving raters a specific search task in mind. For this
reason, raters are more likely to base their judgement on what
they perceive as the most dominant visual properties of the im-
ages (e.g., dominant color of the background, etc.).
Third, as shown in column 1 of Fig. 7, images that are near-

duplicate of each other are frequently shown in the top search
results (especially in queries associated with product categories)
and therefore in the testing image triplets. In such cases, when
one of the near-duplicate image is used as the query image,
raters often choose the other one as the more-similar image.
Such near-duplicate images can be easily identified using global
features. However, we observed that near-duplicate images do
not usually receive more clicks than images that are visually
less similar but semantically related. We conjecture that this is
due to the fact that when searching for photo from the image
search results, search engine users are unlikely to exam near-du-
plicate images during the same search sessions. For this reason,
such task-dependent click patterns have different properties than
those derived from perceptual similarity test.
Fig. 8 also shows that for queries in polysemy categories.

Co-click statistics outperforms Google-L2 distances. This is
due to the observation that, as shown in column 2 and 3 of Fig. 7,
a particular visual concept (such as apple logo) has high intra-
class variance with respect to the image features. Images can
be similar in multiple feature dimensions such as color (green
apple, green logo) or shape. Query-independent distance func-
tions, such as Google-L2, have limited capacity to select fea-
tures that are important to disambiguate images produced by
the text-query. For this reason, Google-L2 is less accurate than
distance generated from co-click statistics. By learning feature
weights from the co-click statistics, those most discriminative
features in this query, such as shape of the logo, are likely to
have more weights over other features (color, etc.).
Fig. 8 also shows that combining both co-click statistics

and Euclidean distance over the image features, Coclick+L2,
produces more accurate estimation of image distances than
when either is used separately. This result is not surprising
as combining two largely independent sources of information
usually produce more accurate results than when either one is
used separately.
Fig. 9 presents the accuracy of co-click statistics derived from

the query logs. TP/FP represents true positive/false positive
rates—the percentage of testing triplets where the label agrees/
disagrees with the output of (2). 0 (Difficult-to-decide) repre-
sents the percentage of testing triplets where co-click statistics
are not sufficient to estimate the more similar image (output
0 in (2)). Other represents the percentage of testing triplets
where the selections made by the three raters differ from one
another (or they all choose to skip the triplet by choosing cannot
decide.).
Fig. 9 shows that the number of testing triplets that are

correctly predicted by using co-click statistics (TP) is signifi-
cantly larger than those with incorrect predictions (FP) and this
difference is consistent across all queries. This result suggests
co-click statistics, even when used independent of other sources
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Fig. 9. The accuracy of co-click statistics. TP/FP represents true positive/false positive rates—the percentage of testing triplets where the label agrees/disagrees
with the output of (2). 0 represents the percentage of testing triplets where co-click statistics are not sufficient to estimate the more similar image (output 0 in (2)).
Other represents the percentage of testing triplets where the selections made by the three raters differ from one another (or they all choose to skip the triplet by
choosing cannot decide.).

of signal, is a reliable measurement of image similarity. Note
that we removed the testing triplets labeled as other from
consideration, as the difference in perceived similarity relative
to the query image is either too small or too subjective. Fig. 9
also shows that for all queries, majority (more than 50%) of
the image triplets received the rating of other, more so in
categories such as person, product and animal than polysemy.
3) Analysis 3: Accuracy of Query-Specific Distance: This

section describes a set of experiments designed to evaluate the
accuracy of learned query-specific distance functions, and com-
pare them against the global (query-independent) [30] distance
functions. We sample training triplets from the combined dis-
tance using (3), and use them to train query-specific distance
functions. All methods use the same type of features—each
image is represented as a fixed dimension feature vector derived
from first concatenating and quantizing various types of image
features such as color, texton and wavelets and then use kPCA
(with histogram intersection kernel) to reduce the dimension-
ality of the feature space. We used the most significant 59 di-
mensions. The difference between Google-L2, and
are the learned feature weights.
Fig. 10 shows the accuracy of these query-specific distances.

We compute the average true positive and false positive rates for
each categories of queries. represents query-dependent
distance; represents query-independent distance learned
from the same training data. Fig. 10 shows that outper-
forms both andGoogle-L2. The improvement is most sig-
nificant in category person, place and polysemy. Note that in
most cases, learning a single query-independent distance func-
tion resulted in worse performance than query-specific distance
functions.

Fig. 10. The accuracy of query-specific distances ( ) against state-of-
the-art distance function used by Google (Google-L2), and query-independent
distances ( ).

Fig. 11 presents a set of ranking results where the learning
query-specific distance is particularly beneficial. Each row
presents the top 10 nearest neighbor images retrieved with the
first image as the query image. The odd number of rows (1, 3,
5, …) are ranking based on Google-L2, while the even number
of rows (2, 4, 6, …) are those base on query-dependent distance
( ).

D. Analysis 4: Size of Training Data on Accuracy

As it is computationally expensive to train with all available
training triplets,2 this section studies the effect of number of
training data on the accuracy of the learned distance. Fig. 12

2In our experiment, we obtained an average of 2 million training triplets for
each query.
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Fig. 11. Examples of image ranking results. Each row presents the top 10
nearest neighbor images retrieved given the first image as the query image. The
odd number of rows (1, 3, 5, …) are ranking based on Google-L2, while the
even number of rows (2, 4, 6, …) are those base on query-dependent distance

. (a) apple. (b) beetle.

presents the accuracy of query-specific distance given the
number of available training triplets. We randomly sampled
2%, 16%, and 64%, of the triplets from the all available
training data. The result shows that the testing accuracy im-
proves quickly as we increase the number of training data from
2% to 16%. The accuracy distance functions trained from 15%
of the available data is comparable with those trained from all
the data.

E. Analysis 5: Visualizing the Learned Feature Weights

In order to give more intuitions behind the learned weights,
we conducted a separate experiment: instead of concatenating
various features and then use kPCA for dimension reduction
(a process that makes the resulting feature weights difficult to
interpret), we treat each type of feature (e.g., color, wavelet,

Fig. 12. The accuracy of query-specific distance given the number of available
training triplets.

texton) separately, and learn the relative importance of these fea-
tures using the same learning approach. The results are shown
in Fig. 13.
Fig. 13 shows that color (LAB) is most dominant in distance

function for queries such as steve jobs, brad pitt, jaguar, taylor
swift, allen iverson, zune and chicken, and least dominant in
electric guitar, fuji, iphone and cup. We were initially puzzled
by the fact that color is also important for queries related to
people (e.g., brad pitt). Further analysis reveals that, when ex-
amining the image triplets related to celebrities, if all three im-
ages contain the person of interest (which is most likely given
the triplets are selected from the top 100 search results), human
raters find it hard to choose the more similar image. Very often
they choose cannot decide given triplets related to such queries,
except in cases where one of the candidate image is near-dupli-
cate of the other, or when there is a strong similarity to the color
of the dress or background stage. We also found that features
sensitive to the shape or texture of the images, such as texton,
are dominant in queries including pig, great wall, cat, cup and
electric+guitar.

VI. EXPERIMENT II

A. Target Search Evaluation

This section evaluates distance functions in the actual task
of image search. Specifically, we adopted the target-search ex-
periment methodology [24], designed to simulate the actual re-
trieval task of locating a specific “target” image using image
retrieval systems. The experiment consists of two steps: first, a
target image selected from the image database is presented to the
subject for a short duration of time; next, the subject is instructed
to locate the target image based on their “mental image” using a
retrieval or browsing system. The experiments are timed so that
the speed with which a task is completed is used to quantify the
effectiveness of the retrieval system. This is a variation of a sim-
ulated work task situation [1], and has been used previously [6],
[21], [3] to evaluate information visualization systems.
We adopted the target-search experiment methodology for

two reasons. First, searching for a target image with a specific
criteria in mind is one of the most common mode of image
search tasks [8], [4], [25], so users’ efficiency in conducting
target-search is a strong indication of the effectiveness of an
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Fig. 13. The relative importance of features with respect to the query.

image retrieval system. Second, an image retrieval system is
only meaningful in its service to people, so performance mea-
surement should be anchored in human evaluation, especially
when the retrieval system allows users to interact with the search
results (e.g., selecting an image exemplar).
We made two choices when designing the study. First, we

make the assumption that the search results contain the target
image. We conjecture that in practice, if the user cannot find
an image in the search results, she or he will formulate another
query and repeat this process until the target image is found.
Second, in order to better simulate the case where users find im-
ages based on a “mental” sketch of the target image, we make
the decision to remove the image from the user view after dis-
playing for a short period of time.
1) Experiment Methodology: We follow the grid layout most

commonly used in current Web image retrieval systems. As a
typical Web image retrieval system displays 20–30 images per
page, our system displays 24 images per page. User can use a
scrollbar to see the next page of images. The system caches all

the images in the browser memory at any given time, to reduce
the display latency. Standard 27-inch monitor is be used, with
the browser (chrome) is maximized to occupy the entire screen.
Subjects are instructed to use the scroll-bar or arrow key to

browse through the images. At any time, a subject can switch
from text query-based ranking to content-based ranking by se-
lecting an image example. If the clicked image is the target
image, then the task is completed. We make the assumption that
after an image example is selected, the subject needs to browse
through the re-ranked images without making further image se-
lections. This is to simplify our analysis of the retrieval system.
In practice, a search engine user may choose to go back to the
original search results, or issue a new query if they cannot find
the target image in the top re-ranked results. We plan to study
these more complex interaction processes in future work. We
also allow experiment subjects to “skip” any particular task by
clicking a button located at the beginning of the search results.
We selected queries using similar methodology to those de-

scribed in Section V-B. Fifteen human subjects participated in
this study. They are recruited by a third party who had no knowl-
edge about the goal of the experiments. Human subjects were
asked to complete a set of randomly selected tasks within a pe-
riod of time. The random selection of retrieval tasks ensures that
experiments are not biased by the order in which tasks are pre-
sented to the subjects—we expect subjects to become increas-
ingly efficient with the hybrid retrieval systems and therefore
more adept at finding the target image. We do not inform the
subjects about the type of ranking algorithm used. This is to pre-
vent subjects from developing strategies to exploit the artifacts
of a particular ranking algorithm. At the beginning of the exper-
iment, we present subjects with an instruction page on how to
use hybrid image retrieval systems.
2) Evaluation Criteria: We use three quantitative measure-

ments to evaluate the effectiveness of image retrieval systems,
time-to-completion, target-rank and abandonment-rate.
Time-to-completion is the time it takes for the subject to locate
the target image.
Target-rank is the position of the target image in the search

results. It is closely related to the number of images that users
need to examine before the target image is found. Given a text
query-based image retrieval system, target-rank is simply the
rank of the target image given text query, as we assume that the
subjects observe all the images positioned ahead of the target
image. In a hybrid image retrieval system, subjects can change
the ordering of the search results by selecting of image exem-
plar, therefore, the value of target-rank depends on a) the posi-
tion of the target image given the query, b) the position of the
selected image example, and c) the position of the target image
after re-ranking. Specifically, we define target-rank (TR) for hy-
brid image retrieval system given the target image and user
selected image exemplar as:

(9)

where is the position of the similar image in the search
results produced by the text query. is the position of the
target image after reordering based on similarity to the image
exemplar . Note that in the initial search results, if the target
image is ranked ahead of the best ranked similar image, then
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Fig. 14. In target-search experiment, the user is first briefly shown a target
image and then instructed to locate the image from an image database using
a specific retrieval system.

target-rank is simply the position of the target image in the initial
search results, or .
Compared with time-to-completion which is affected by

multiple factors not related to the retrieval system (i.e., concen-
tration of the individual when completing that task), target-rank
depends only on the ranking functions used and subjects’
selection of the similar image. Experiments presented in
Section V-C demonstrated that a collection of query-specific
distance functions can outperform a Euclidean distance (used
for all queries) in predicting the outcome of image similarity
comparison test. Therefore, we conjecture that, on average,
the target image will be ranked higher with a query-specific
distance function given the selected similar image. This will
result in lower target-rank, and if the difference is sufficiently
large, also result faster time-to-completion.
Abandonment-rate is the percentage of target-search tasks

abandoned by the subjects. A task is abandoned when the sub-
ject clicks the “skip” button in the option pane. We believe that
abandonment rate offers clear indication on the effectiveness of
an image retrieval system. We did not give specific instructions
on when the “skip” button should be used. We suspect that sub-
jects are likely to abandon a task when the target photo is diffi-
cult to interpret and/or when the subject has experienced frustra-
tion in locating the photo in the search results. We aggregated all
the abandoned tasks across all subjects and grouped them based
on the type of image retrieval system used.
3) Experiment Results: Fig. 16 displays the completion sta-

tistics of the each subject using scatter plots. The -axis repre-
sents the average completion statistics using the baseline hybrid
image retrieval system (Google-L2). The -axis representing
the average completion statistics using the query-specific dis-
tance functions ( ). Each point on the graph represents
the comparison of the performance measurement of a single
subject. A point below the diagonal line suggests that a sub-
ject is able to find the target image faster using the proposed
approach than using baseline.
The results show that the two distance functions are compa-

rable with each other in time-to-completion, but con-
sistently produces better target-rank than Google-L2 (11 out
of 15). We conjecture that this result is due to the fact that
Google-L2 is already very accurate – a small improvement in
the rank (or position) of the target image does not significantly
affect the time it takes for user to locate the target image.
Table II shows the percentage of tasks abandoned given each

image retrieval systems, averaged across the tasks for all sub-
jects. It shows that query-specific distance functions resulted in
lower rate of abandonment. In other words, for every 100 tasks

Fig. 15. An example of how an experiment subject locates the target image
using hybrid image retrieval system.

Fig. 16. Google-L2 v.s. Query-specific distances. (a) Time to completion.
(b) Target Rank.

conducted using , subjects abandoned on average 9.4
tasks, 3.4 fewer than Google-L2. As abandonment rate is an
important criteria to measure retrieval success, this result shows
that query-specific distance functions improves the user experi-
ence of hybrid image retrieval systems. Fig. 17 shows the corre-
lation between target-rank and the abandonment rate: 1% of the
tasks were abandoned when the target image had a rank of less
than 200, 12% were abandoned with target-rank with more than
200 but less or equal to 400. The abandonment rate becomes
significantly higher when the rank increased to above 400. 78%
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Fig. 17. Correlation between target-rank and task abandonment.

TABLE II
THE PERCENTAGE OF TASKS ABANDONED BY SUBJECTS RATE

WHEN EACH IMAGE RETRIEVAL SYSTEM IS USED

of the tasks were abandoned when the target image has the rank
of more than 800.

VII. CONCLUSION

This work studies the feasibility and efficacy of learning
query-specific distance functions for large-scale Web image
search. We demonstrate that 1) co-click statistics derived from
text-based search engine query logs can be used to predict how
a person will compare images based on perceptual similarity,
2) one can learn query-specific distances from such sources of
information, and the learned distances produce more accurate
comparisons of images and reduce search abandonment-rate
compare to the query-independent image distance function
used by current Google image search.
There are two potential ways to improve the learning

approaches proposed in this work. First, one way to improve
query-specific distance functions is to allow related text-queries
to “share” the learned distance functions. For example, one can
first group the text queries into synsets, and learn synset-specific
distance functions for each synset. One can derive synsets from
an expert-knowledge database such as WordNet [20], or from
the text and images associated such queries [34]. By allowing
training data to be shared among related queries, synset-specific
distances can be computed for less commonly used queries.
Sharing distance functions also reduces the number of distance
functions that need to be cached by the retrieval system.
Second, since our results have shown that query-specific dis-

tance functions can improve ranking accuracy in certain query
categories (e.g., polysemy) more than others (e.g., animal), the
ability to automatically select queries or query categories that
are suitable for such distance functions would be beneficial. One

possible approach is to measure the disagreement between the
co-click statistics and the visual similarity produced by using
un-weighted Euclidean distance, and use such disagreement as
an indication of whether query-specific distance can be useful.
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