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The design of signal processing systems typically involves a high-level specification 
of the requirements of the system, development of an appropriate algorithm or set 
of algorithms to accomplish these requirements, and the implementation of the 
algorithms in an appropriate technology. Often these stages are not independent, 
and in particular, the detailed structure of the algorithms for implementing the 
system needs to take into account a variety of cost measures and options relating to 
system requirements, such as speed, modularity, and so on, and a variety of archi- 
tectural constraints or technologies available for the implementation. For these 
reasons, it is important that algorithm design explore a wide variety of implementa- 
tions which are found by exploiting the underlying mathematics of signal processing 
and taking into account a variety of cost measures. This is usually done by a design 
engineer with a detailed knowledge of and insight into a variety of transformations. 
From an input/output point of view, these transformations result in equivalent signal 
processing operations, but may have very different implications with regard to 
various cost measures. 

In carrying out signal processing system design, there are a few design tools 
currently available, but these primarily provide a convenient environment for writing 
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programs or for testing algorithms on data. There are no systems available presently 
that remap signal processing algorithms, specified at a high level of abstraction, to 
algorithmic descriptions that are more efficient in the context of particular imple- 
mentational or architectural constraints. Such a design environment, if successful, 
might generate designs that improve on those that would be generated by experi- 
enced systems designers. A more likely and also highly desirable outcome, at least 
in the short run, is an environment that, with modest human intervention, achieves 
fast designs of signal processing algorithms that are reasonably efficient in relation 
to hand designs by sophisticated systems designers. The potential ability to do this 
in a signal processing context stems from the fact that, for signal processing, algorith- 
mic transformations tend to follow a clearly defined set of mathematical rules. Based 
on these rules, the space of equivalent algorithms can, in principle, be explored to 
determine those that are most efficient using appropriate cost measures. 

This chapter attempts to demonstrate both the feasibility and the advantages 
of a signal processing design environment which incorporates symbolic algorithm 
manipulation along with numerical processing. In particular, we focus on the prob- 
lem of developing automated tools to support algorithm manipulation. As viewed 
in this chapter, algorithm manipulation includes property and transform analyses 
and algorithm rearrangement. Property and transform analyses provide information 
about an algorithm or its output signal. For example, determination that the output 
of an FFT will be conjugate symmetric because its input is real, is property analysis. 
Some examples of properties that are widely used in signal processing are computa- 
tional cost, stability, causality, symmetry, linearity, and time-invariance. The use of 
a z-domain representation of a linear, time-invariant system to determine stability 
is an example of transform analysis. An example of algorithm rearrangement is 
shown in Figure 2.1. Figure 2.1(a) describes one implementation of a noninteger 
sampling rate conversion: upsample by five, low-pass filter, and downsample by 
four. This simple description of a noninteger sampling rate conversion is easily 
designed and implemented but is less computationally efficient than the implemen- 
tations shown in Figures 2.1(b) and (c), which also provide 4 : 5 noninteger sampling 
rate conversions. The desired capabilities of an environment that integrates al- 
gorithm definition, manipulation and analysis, along with numerical processing, are 
discussed in section 2.3, along with the constraints that these capabilities impose. 

In order to demonstrate the advantages of a design environment that combines 
symbolic algorithm manipulation with numerical processing, two application areas 
are considered: noninteger sampling rate conversion and code-division sonar imag- 
ing. Both of these application areas are discussed in section 2.2. Algorithms for these 
applications are defined and manipulated in ADE [l]. ADE (A Design Environ- 
ment), described in more detail in section 2.4, is an experimental environment that 
shows the feasibility of a signal processing workstation with integrated tools for the 
specification of algorithms, computer-aided analysis, and manipulation of those 
algorithms, as well as application of the algorithms to numerical sequences. 

ADE is based on E-SPLICE [2], the first system to demonstrate automated 
property analysis and algorithm manipulation for digital signal processing. ADE and 
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Figure 2.1 Alternate implementations of a 4 : 5 sampling rate conversion. 

E-SPLICE are the results of a sequence of research efforts into integrated signal 
processing environments. These research efforts started in the late 1970s with 
Kopec’s development of SRL [Chapter 1 this volume; 31. SRL provides data abstrac- 
tions that both reflect the basic characteristics of signals and support numeric 
manipulations. SPLICE [2, 41 resulted from an effort to improve the computer 
representation of signals beyond the work that had already been done by Kopec. 
Subsequently, with E-SPLICE, Myers [2] expanded the scope of the software 
environment to include symbolic manipulation of algorithms in addition to the 
previously supported numerical manipulation of signals. ADE [this chapter; l] 
refines the symbolic rearrangement capabilities of E-SPLICE, making possible the 
manipulation of large signal processing expressions. 

In this chapter, two examples, noninteger sampling rate conversion and sonar FSK- 
code detection, are used to illustrate the potential of an integrated signal processing 
environment that combines algorithm definition, manipulation, and analysis with 
numerical processing. These applications are described in this section. 

2.2.4 NoninOeger Samphg Rate Conversion 

Discrete-time sequences are often used to represent a bandlimited, continuous-time 
signal. Often, it is desirable to change the sampling rate that defines the conversion 
between discrete and continuous time. For example, film is shot at 24 frames/set. 
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Figure 2.2 Effect of ;I 4 : 5 sampling rate conversion in the Fourier domain. 

To display the film at the correct rate on American television, the temporal sampling 
rate must be changed to 30 frameskec.’ This 4 : 5 sampling rate conversion can be 
implemented using the structure shown in Figure 2.1(a). The effect of these opera- 
tions in the frequency domain is shown in Figure 2.2. The low-pass filter between 
the upsampling and downsampling operations is necessary to prevent temporal 
aliasing. Unfortunately, this filter operates at a high data rate: for each four input 
points and five output points of the overall system, twenty input and output points 
pass through the low-pass filter. Figures 2.1(b) and (c) show two alternate implemen- 
tations in which the filter runs at lower rates. Figure 2.1(b) shows a polyphase 
implementation of the filter/downsample part of the sampling rate conversion: the 
four, shorter filters each operate at one fourth the rate of the filter in Figure 2.1(a) 
and, if the convolutions are implemented directly, the computational requirements 
are reduced by a factor of four from the original implementation. Figure 2.1(c) shows 
a polyphase implementation of the upsample/filter part of the sampling rate conver- 
sion: the five, shorter filters each operate at one fifth the rate of the original filter 
and, again assuming direct implementation of the convolutions, the computational 
requirements are reduced by a factor of five. 

The two polyphase implementations shown in Figure 2.1(b) and (c) are well 
documented in multirate filtering literature E-51. Another polyphase implementation 
for noninteger sampling rate conversion, which has only recently been documented 
in signal processing literature, was generated by E-SPLICE [2]: this alternate imple- 
mentation will be introduced and discussed in section 2.5. 

2.22 Modulated Filter Banks and Shoti-mme urles 
hansforms 

Conventional sonar imaging systems achieve spatial resolution either through the use 
of a single, swept beam or through the use of multi-element arrays. These tech- 
niques, while highly successful, present some inherent difficulties. In the case of the 
single swept beam, the time required to scan through the desired aperture can result 
in the failure to detect transients. When multi-element arrays are used instead, the 
hardware requirements necessary to achieve high resolution can result in a large, 
costly system. Jaffe and Richardson [6] propose an alternative to these two tech- 
niques using the simultaneous transmission of a set of coded waveforms. 

The transmitter in the proposed system is a set of N transducers, each illumi- 
nating a different direction and each transmitting a distinct signal, Si for 

’ Each frame in American television is made up of two vertically interlaced fields. Sixty fields are 
displayed per second. 
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i = o,... , N - 1. One wide-beam hydrophone is used as a receiver. Multiple- 
hypothesis testing is then used to detect and discriminate the returns from the 
separate beams. In order to achieve good spatial resolution, the set of signals 
{So, * * - , SN _ r} must have good signal-to-signal rejection for all possible time delays. 
In addition, to achieve good range resolution, each signal should have a sharply 
peaked autocorrelation function. Jaffe and Richardson [6] propose a specific set of 
FSK codes with these properties: 

N-l 

Si(t) = C Re{fl,k(t)e-i2”h’} fori = O,...,N - 1 
k = 0 

E.k@) = C,(t - kT) 

where 1 = pi(k) provides, for each i, a different permutation of’ the numbers 
0 ,***, N - 1 versus k and 

c,(r) = w(t)e-i(2n’Q’f 

where w(t) = 0 for t < 0 and for t L T 

Specifically, each signal is made up of a sum of N individual, uniformly spaced 
frequency bursts (commonly referred to as frequency chips). When N + 1 is prime, 
pi(k) can be selected such that the signals and all their circular shifts achieve maximal 
Hamming distance separation.’ The window w(t) allows the frequency chips to be 
shaped to adjust their side-lobe characteristics. 

The received signal can be modeled as a superposition of the reflected energy 
from each of the illuminated scattering centers: 

N-l M, N- 1 

r(t) = C 2 pi,m C Re{&.~~~.k e,,(r - ~i,m)e-i2~f,(f-~,,,)} 
i=Om=l k=O 

The summation over i represents the superposition of the returns from different 
transmitter beams, and the summation over m represents the superposition of the 
returns from the Mj scattering centers within the ith beam. Pi.m is a positive number 
representing the strength of the return from the nlth scattering center in the ith 
transmitter beam: it is determined by the scattering cross section and the distance 
of the target. 7i.m is the propagation delay for the combined forward and return paths 
to and from the scattering center. (P;.m,k represents a nonuniform phase distortion 
on the kth chip of the FSK code introduced by the scattering characteristics of the 
target and by the fluctuations in the propagating medium. The possibility of a 
Doppler frequency shift is ignored in this model. 

From this model, the values of pi.m and Tilm as a function of i and m provide 
the desired sonar “image.” For any given time delay, pi,m can be estimated using a 
detector that minimizes the mean square error. Estimation of T;,,, can be avoided by 
simply estimating pi. ,n for all resolvable time delays.” Using this approach, the 

‘The Hamming separation distance is the minimum number of elements that differ between a code 
word and any of the circular shifted or unshifted versions of another code word. 

‘Since the total bandwidth of the transmitted signal is NIT Hz, the resolvable time delay is 
approximately TIN seconds. 
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discrete-time approximation to the detectors is shown in Figure 2.3. In-phase and 
quadrature samples are taken of the received signal after demodulation by the carrier 
frequency,f,. Matched filters are used to detect the individual frequency chips. Since 
the model allows for an unknown, nonuniform phase distortion between frequency 
chips, incoherent summation is used between frequency chips: this incoherent com- 
bination is completed in the last box in Figure 2.3. Finally, to avoid a priori 
estimation of T~,~, the output from these detectors is computed at each point in time. 

The digitized frequency chips will be w(nYFIN)e-i(‘“‘Nk” for k = 0, . . . , A; - 1. 
Thus, the outputs from the frequency-chip matched filters are: 

yk[f] = $1 
* (w (-,,)@-/Wf) 

= (2-l) 

From (2.1) the frequency-chip matched filters can be implemented as a modulated 
filter bank. 

A well-known implementation of a modulated filter bank is the short-time 
Fourier transform (STFT). By defining v,[n] = x[t + n]w(nT/N), (2.2) can be seen 
to be the N-point discrete Fourier transform (DFT) of v,[n]. Thus, the matched 
filters can be implemented using a STFT. Formulating the matched filters as a STFT 
allows the use of well-known, computationally efficient implementations of the 
STFT. The most obvious of these is the FFT: an N-point FFT of v,[n] can be 
separately computed at each time sample t. This approach requires O(N log N) 
computations per time sample t and allows temporally sparse computation of yk[t] 
without any increase in complexity per output point. 

A third implementation of the frequency-chip matched filters can be derived 
by again considering (2.2). Defining 

-+I = 
x[t + n] 0 I rz < N 
0 otherwise 

Recovery 

. . ‘i trill 
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: 
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Figure 2.3 The discrete-time approximation to the optimal detectors for N FSK- 
coded sonar signal beams. 
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2.3 

with X,[k] and W[k] as the N-point DFT’s of x,[n] and w(nT/N), yk[f] = 

(lIN)X,[k] @ W[k] h w ere @ is an N-point circular convolution. This approach im- 
poses the shaping provided by w(t) through frequency-domain convolution. The 
advantage of shaping xJn] after computing the DFT is that the Goertzel algorithm 
can then be used. In particular 

X, + ,[k] = ej(2n’wk(X,[k] + x[t + N] - x[t]) 

Using this recursive approach to find X,[k] requires Q(N) computations per time 
sample t. The total computational cost of computing Yk[t] depends on the form of 
W[k]: if W[k] h as only a few nonzero samples, the additional computational cost 
imposed by shaping may be much lower than would be required by a general 
convolution of two sequences. A disadvantage of this approach is a problem with 
stability: the recursive computation depends on pole/zero cancellation on the z- 
domain unit circle. 

As will be described in section 2.4, ADE generated a fourth, innovative 
implementation of the frequency-chip matched filters [l]. This new approach, which 
will be referred to as the pruned FFT, could not be found in either modulated filter 
bank or short-time Fourier transform literature. Like the recursive computation of 
the STFT, the pruned FFT imposes the shaping provided by w(t) through frequency- 
domain convolution and, like the recursive STFT, only O(N) computations per time 
sample tare required to compute X,[k]. The pruned FFT has the advantage over the 
recursive STFI of unconditional stability. 

CAPABILITIES AND REQUIREMENTS FOR AN INTEGRATED 
SIGNAL PROCESSING ENVIRONMENT 

Section 2.1 asserted that a signal processing workstation that provides an integrated 
environment for numerical processing, algorithm definition, and algorithm manip- 
ulation could potentially simplify the design of new signal processing algorithms, as 
well as improve the reliability of the design process. Supporting both algorithm 
definition and numeric processing allows the engineer to test the behavior of al- 
gorithms as soon as they are defined. Similarly, supporting both algorithm definition 
and property/transform analysis would allow analytical tools to be easily applied by 
computer, such as studying the z-domain representations of linear time-invariant 
systems. By including algorithm rearrangement in the workstation’s capabilities, a 
high-level signal processing “compiler” can be used to apply well-known global 
transformations to an initial description of an algorithm. One example of this 
high-level compilation would be the transformation from the noninteger sampling 
rate conversion shown in Figure 2.1(a) to one of the polyphase structures shown in 
Figures 2.1(b) and (c). Another possible advantage to a high-level signal processing 
compiler is the derivation of new, computationally efficient implementations for the 
given signal processing operation. Two examples of new, innovative implementa- 
tions found by high-level signal processing compilers will be discussed later in this 
chapter. 
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Given that our goal is to expedite signal processing algorithm design, some 
effort should be made to determine what capabilities are desired and what con- 
straints are imposed by these desired capabilities. A general statement of the desired 
capabilities has already been made: to support numeric processing of signals, al- 
gorithm definition, signal and system property analysis, and algorithmic rearrange- 
ment, all in a consistent, well-integrated manner. Each of these requirements in turn 
imposes constraints on the signal representation that is chosen. Some of these 
constraints have been pointed out by Kopec in Chapter 1. In this section, we review 
the requirements described by Kopec and we introduce other requirements, to allow 
for algorithm manipulation and analysis. 

2.3.4 Support for Numerical Signal Processin 

Providing consistent, well-formulated support for numeric processing of signals and 
for algorithm definition imposes some basic constraints on the representation of 
signals, some of which were discussed in Chapter 1. The signal representation should 
be explicit and unique, with uniform external behavior; it should distinguish between 
the domain and the nonzero support of the signal; and it should be externally 
immutable. The same signal representation should be used for both numerical 
processing and for the signal analysis and manipulation operations. In more detail: 

0 Explicit, unique signal identity: In signal processing, signals are not just an 
ordered collection of sample values, but instead have a unique identity and inherent 
properties of their own [Chapter 11. Many of their properties, such as nonzero 
support, domain, and symmetry, are closely tied to the sample values, but others, 
like the algorithm that generated the signal or its computational cost, cannot be 
derived from the sample values. Therefore, an explicit signal representation, distinct 
from a simple ordered set of sample values, is necessary. 

e Uniform external interface to signals: To simplify the interface of signals and 
systems, signal representations should all have the same external behavior, indepen- 
dent of the internal computational method used to generate the sample values of the 
signal [2,4]. For example, the retrieval of a sample value from a point operator, such 
as a multiplication block, should externally appear the same as the retrieval of an 
array operator, such as an FFT block, and the same as the retrieval from a state- 
machine operator, such as an IIR filter. 

0 Distinct signal domain and nonzero support: The signal representation 
should distinguish between the domain and the nonzero support of the signal [2,4]. 
The domain of a signal determines where the signal is defined: discrete-time 
sequences are defined on all integer time indices and undefined elsewhere; discrete- 
time Fourier transform signals are defined on all real frequency indices; and z-trans- 
form signals are defined on the annulus of complex indices inside its region of 
convergence and undefined elsewhere. Any sample value within the defined domain 
of the signal should be accessible. Accessing a signal inside its domain but outside 
its nonzero support should return the sample value of the signal at that point, namely 
zero. 
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0 Immutable signal representation: An additional constraint on a signal repre- 
sentation for numerical processing is that signals should be immutable, i.e., there 
is no operation that can change the properties of a signal once it is defined. Math- 
ematically, signals are immutable objects: their identity and their properties are 
fixed and unchanging. For example, the sample values, symmetry, and nonzero 
support of the 256Lpoint Hanning window are completely defined and immutable. 
Using this sequence as input to a system does not alter the sequence, but instead 
produces a new sequence. As pointed out in Chapter 1, this immutability in signals 
also simplifies and clarifies the signal processing algorithms that use them: im- 
mutability makes signals referentially transparent. 

2.3.2 Support for Aigorith Definition 

Supporting algorithm definition constrains the internal representation of signals and 
systems, just as the support of numerical processing of signals constrains the external 
behavior of signals. Besides the constraints already discussed, algorithm definition 
is simplified if there are multiple computational models that are supported by the 
signal processing environment. Four computational methods that are widely used in 
signal processing are point operations, array operations, state-machine models, and 
composition operations. 

o Array operators, such as FFTs, compute multiple sample values simulta- 
neously. 

0 State-machine models generate sample values sequentially using an internal 
state vector: an IIR filter, for example, could be easily implemented using a 
state-machine model. 

0 Point operations, in contrast to array operators and state-machine models, 
generate one sample value at a time in any random order. Two examples of 
point operations are addition or multiplication. 

0 Composition operations are implicitly defined through the cascade or “compo- 
sition” of other, previously defined systems. An example would be the defini- 
tion of a cosine sequence as the sum of two complex exponentials. 

Supporting, all four of these computational methods simplifies the programmer’s 
task, since algorithm definitions do not have to be forced into a computational form 
that is ill-suited for the operation at hand. Providing multiple computational meth- 
ods while maintaining a uniform external interface decouples the internal and 
external characteristics of the signal [2, 41. Thus, the user of a signal need not be 
concerned with the computational method that the programmer of the signal chose. 

2.3.3 Support for Signal Property and Transform Analysis 

The premise of this chapter is that a well-integrated signal processing design environ- 
ment should support property and transform analysis, as well as the more standard 
algorithm definition and numeric processing steps. Property analysis allows specific 
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questions about the characteristics of a signal or system (e.g., symmetry or linearity) 
to be answered. Transform analysis uses an alternate representation of a signal 
or system (e.g., a z-domain representation) to emphasize some aspect of the signal 
or system that is not apparent in the time-domain representation. The automation 
of property and transform analysis would allow these analytical tools to be easily and 
reliably applied by computer. Although property and transform analysis could 
theoretically be completed using “first principles,” this approach to property and 
transform analysis would be slow and unwieldy at best. Instead, the approach that 
is envisioned relies on explicitly including information in the signal and system 
definitions about properties and transforms. This approach to the automation of 
property and transform analysis would require: 

0 Explicit descriptions of signal properties: For example, the definition of 
cosine sequences would explicitly include the fact that these sequences are real and 
symmetric. With this type of information, the environment could provide the values 
of signal properties, such as those listed in Table 2.1. Furthermore, by providing the 
user with the appropriate tools, additional properties (e.g., cyclostationarity) could 
be added by simply adding this extra information to the signal definitions. 

0 Explicit descriptions of the effects of systems on signal properties: For exam- 
ple, by indicating the effect of a shift operator on the symmetry of a sequence (i.e., 
that it shifts the point of symmetry) and on the sample value type of a sequence (i.e., 
no effect), the symmetry and sample value type of a shifted cosine signal could be 
determined by the signal processing environment. This information about a system 
would describe its effect on the signal properties of its inputs. 

e Explicit identification of signal transforms: For example, the definition of 
rectangular-window sequences would include the fact that their discrete-time 
Fourier transform is an aliased sine signal. With this information, the environment 
could provide closed-form expressions for signal transforms, such as discrete-time 
Fourier transforms (DTFTs) and z-transforms. 

l Explicit descriptions of the effects of systems in the signal transform space: 
For example, by indicating the effect of a shift operator on the Fourier-domain 
representation of its input (i.e., modulation by a complex exponential signal), the 
Fourier-domain representation of a shifted rectangular window could be determined 
by the signal processing environment. This information about a system would 
describe its effects on the DTFT and z-domain representations of its inputs. 

TABLE 2.1 SOME USEFUL SIGNAL AND SYSTEM PROPERTIES 

INVERTIBLE-P, INVERSE-SYSTEM: Whether or not the system is invertible and if so, its 
inverse. 

SAMPLES-COMPUTABLE-P, COMPUTABLE-P: The computability of individual sample values 
of the signal and of all the sample values of the signal. 

SAMPLE-TYPE: The data type of the sample values of the signal. 
RANGE: The range of the sample values of the signal. 
NON-ZERO-SUPPORT: The indices on which the sample values of the signal may be nonzero. 
PERIODICITY: The repetition period of the signal. 
SYMMETRY: The description of the symmetry characteristics of the signal. 
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23.4 Automation of ADgsrithm WeCmxqernent 

One of the most desirable capabilities for a signal processing environment is the 
automation of algorithm rearrangement. This would in effect provide the engineer 
with a high-level signal processing “compiler.” This compiler could be used both to 
apply well-known global transformations to an algorithm and to derive customized, 
computationally efficient implementations for unusual algorithms. High-level com- 
pilation of algorithms requires both the ability to enumerate mathematically equiv- 
alent implementations and the ability to compare these alternate implementations 
to determine their relative merit, based on computational efficiency [l, 21. 

Enumeration sf athematically E 
Implementations 

Since high-level compilation of an algorithm relies on enumeration of mathe- 
matically equivalent implementations, the distinction between mathematical equiv- 
alence and computational equivalence is important in algorithm manipulation. 
kfathematicaf equivalence, or equality, between signals implies that the domain and 
all of the sample values of the signals are equal, even though the signals may have 
used different computations to arrive at those sample values. An example of math- 
ematical equivalence is provided by the 256-point DFT of the 256-point Warming 
window4 and the sequence $[k] - $[k - l] - $6[k - 2551. Assuming infinite com- 
putational precision, the domain and the sample values of the sequences are equal, 
even though they were arrived at through very different paths. Computational 
equivalence between signals implies that all the signal’s properties are identical. This 
includes the sequence of computations used to arrive at the signal sample values (i.e., 
the generating system or algorithm). Thus, the only way to get to computationally 
equivalent signals is to use the same input signals into the same sequence of oper- 
ations: the output of an FFT operator applied to a discrete-time impulse is compu- 
tationally equivalent only to the output from the same FFT operator applied to an 
identical discrete-time impulse. Computational equivalence may seem like a tautol- 
ogy, involving statements like “sinx = sinx,” but it is an equivalence that is often 
lost in computer programming languages. For example, in most programming lan- 
guages, the mathematical equality of two copies of the output from an FI?T operator 
would be difficult to determine, requiring a sample-by-sample comparison of the two 
output sequences, and computational equality would not be determinable based on 
these output samples. 

In algorithm rearrangement, mathematical equivalence must be maintained 

4An M-point Hanning window, w[n], is [7] 

1 2 
- 

1 w[n] = 2 cos(2mlM) 0 5 n -C M 

0 otherwise 
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even though computational equivalence is deliberately lost. To provide these lists of 
mathematically equivalent (but computationally distinct) signals requires: 

l Explicit identification of equivalent signals: For example, by noting the 
mathematical equivalence between the Hanning window sequence and a raised, 
windowed cosine sequence, a list of two mathematically equivalent signals could be 
collected. 

* Recursive identification of equivalent signals and identification and substitu- 
tion of equivalent subexpressions: This requirement is most easily explained by 
example. Using the previous example of the Hanning window, assume that another 
mathematical equivalence was noted between the cosine sequence (cos orz) and the 
sum of the conjugate pair of complex exponentials ((ej”” + e-‘““)/2). The environ- 
ment must be able to put these two pieces of information together and increase the 
list from the two equivalent sequences (the Hanning window and the raised, win- 
dowed cosine) to three (the Hanning window; the raised, windowed cosine; and the 
raised, windowed sum of the conjugate pair of complex exponentials). This requires 
that the environment search recursively for equivalent signals using newly discovered 
signals (in this case, the raised, windowed cosine sequence) and that the environment 
search for signals that are equivalent to the subexpressions of the complete signal 
description (in this case, the cosine sequence is a subexpression of the raised, 
windowed cosine). This search strategy is described in detail in sections 2.5 and 2.6. 

To provide these lists of mathematically equivalent systems requires: 

* Explicit identification of equivalent output signalls: For algorithm manipula- 
tion, lists of mathematically equivalent systems must be derived from information 
included in the system definitions. Often, the most straightforward way to provide 
this information is to describe the signals that are mathematically equivalent to the 
output signal when the system has been applied to some general or partially specified 
input. Without this shift in focus, most algorithmic transformations are difficult to 
specify, since the input signals and parameters of the system are unbound until the 
system is applied. For example, the description of the Goertzel algorithm as being 
mathematically equivalent to one channel from the rectangularly windowed STFT 
is not possible without being able to refer to the input signal, x[n]. Thus, this 
approach to finding equivalent algorithms places two requirements on the environ- 
ment: that the system definitions include information about signals that are equiv- 
alent to their output signal and, as discussed next, that general or partially specified 
signals can be represented and manipulated. 

@ Representation of general or partially specified signals: As mentioned previ- 
ously, one straightforward method of finding mathematically equivalent implemen- 
tations of an algorithm is to use general or partially specified signals as the inputs 
to the algorithm and to then find signals that are mathematically equivalent to the 
output signal from the algorithm: the equivalent algorithms are then given by the 
composition of systems used to generate the equivalent output signals. This ap- 
proach to algorithm manipulation is highly reminiscent of the algebraic manipulation 
that engineers commonly do on signal processing equations. In algebraic manipula- 
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tion of signal processing expressions, the inputs are represented by an algebraic 
variable, such asx[n], and the output signal generated by processing this input is then 
manipulated. For example, the derivation of the Goertzel algorithm from the direct 
formulation of the STFT would start with the input to the STFT being represented 
by x[n]. The output signal from the DFT would then be 

N-l 

yk[t] = C x[t + n]e-j(2v'Mkn 
n=O 

The Goertzel algorithm could then be derived by manipulating yk[f] without making 
any assumptions about the sample values or properties of x[n]: 

N-l 

yk[t + l] = C x[t + 1 + n]e-j(2m'Mkn (2.3) 
n=O 

N 
= ej(2alN)k C x[t + m]e-jWWkm 

(2.4) 
m = 1 

N-l 
= ei(2nihr)k C x [t + m]e-jC?~lWk~ + ej('n'l\?k x [ f + N] _ &P/W x [t] 

(2-5) 
m=O 

= ei(2m’qk(y&[t + 11 + x[t + N] - x[t]) 
The representation of a general or partially specified signal requires a mechanism 
for representing signals whose sample values and properties are not completely 
known. 

Comparison of Gomputational Cost 

To provide a high-level compiler of signal processing algorithms, the environ- 
ment must include some method for ranking the mathematically equivalent imple- 
mentations of a given algorithm and selecting the best one. The metric that is 
generally used by compilers is the computational cost of the alternative algorithms. 
Thus, the signal processing environment must be able to determine the relative costs 
of equivalent algorithms, in order to select the most computationally efficient. Myers 
[2] and Cove11 [l] d iscuss computational cost metrics in more detail. 

23.5 Summary of Requi ments for an mted 
Signal Processing 

An integrated signal processing environment should support the numeric processing 
of signals, the definition of new signal processing algorithms, the analysis of the 
properties of signals and systems, and the rearrangement or “compilation” of signal 
processing algorithms. To provide support for these capabilities, certain constraints 
have been placed on the signal processing environment. 

l It must provide an explicit representation for signals. 
0 The sample values of signals must be accessible at random from anywhere in 
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the domain of the signal: this requirement implies both that the external access 
of the sample values is unaffected by the internal computational model and that 
sample values must be accessible outside the nonzero support of signals. 

0 The signal must be immutable in its external characteristics: its property values 
and sample values must be unchanging from the time they are first referenced. 

e Analyses of signal and system properties and transforms must be provided by 
the environment, using information included in the definitions of signal and 
system classes. 

Q Finally, algorithm rearrangement and cost analysis must also be provided 
by the computer, to allow for high-level compilation of signal processing 
algorithms. 

Figure 2.4 reviews the capabilities of some currently available signal processing 
environments. This figure does not attempt to exhaustively list the currently avail- 
able software. Instead an attempt is made to examine the range of signal processing 
environments currently in use. The first set of signal processing environments 
[17, 181 listed in Figure 2.4 were developed to only support the definition and 
numerical application of completely specified, numeric algorithms. As mentioned 
in section 2.1 and described in Chapter 1, SRL is the result of research by Kopec 
into data abstractions both to reflect the basic characteristics of signals and to support 
numeric manipulations. Kopec [3] advocated the immutability of signals and the 
explicit availability of their nonzero supports as being essential for simplifying and 
clarifying signal processing programs. nthPOWER (Signal Technology, Inc.) is a 
commercial version of SRL and one of its descendants, ISPUD [8]. SPLICE [2, 41 
was also mentioned in section 2.1. In SPLICE, as in SRL, sequences are immutable 
data objects with an explicit nonzero support. Unlike SRL, sample values outside 
the nonzero support can be accessed by the same operations that access the sample 
values inside the nonzero support. Sequences, defined by the generating system and 
its inputs, behave uniformly independent of the signal processing model used to 
define the system: for example, sample values of a sequence defined using a state- 
machine model can be fetched at any index without explicitly determining the 

. 

MATLAB, SRLJSPUD, 
ILS. etc. nthPOWER SPLICE 

E-SPLICE, 
ADE 

Partially fulfills requirement 

Explicit signal representation 

Unique signal representation 

Immutable signals 

Explicit signal properties 

Distinct domain and nonzero 

“Abstract” signals 

Equivalent implementations 

support 

Figure 2.4 The capabilities of some currently available signal processing environ- 
ments. 
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previous states. E-SPLICE [2] and its descendent, ADE [l], were designed to 
support not only numerical processing and algorithm definition but also automated 
property analysis and algorithm rearrangement. Hence, these are only environments 
that provide signal representations which meet most of the constraints developed in 
this section. In particular, the signal representations are unique and immutable with 
a distinct domain and nonzero support and with explicit signal properties, such as 
symmetry and computational cost. Furthermore, these environments automate the 
analysis of properties and signal transforms and can represent and manipulate 
“general” signals. Finally, both E-SPLICE and ADE provide a tool that approaches 
the desired high-level signal processing compiler discussed earlier: both environ- 
ments will provide an enumeration of alternate implementations of an algorithm, 
partially ranked on the basis of the computational cost vectors. 

The remainder of this chapter focuses on the capabilities and characteristics 
of ADE. Section 2.4 includes an example of the use of ADE to define and analyze 
the properties of the FSK-code detector, shown in Figure 2.3. The remaining 
sections of the chapter explore the process through which alternate implementations 
of an algorithm are found by ADE. Some results from using ADE to find alternate 
implementations are discussed in section 2.4. 

2.4 ADE: A FEASIBILITY PROOF FOR AN BNTEG ED SIGNAL 
PROCESSlNG ENWIRONIMENT 

The previous section pointed out some of the requirements for a complete and 
well-integrated signal processing environment. As shown in Figure 2.4, ADE at- 
tempts to meet each of these requirements. Therefore, ADE will be used within this 
chapter to illustrate the potential benefits of a well-integrated signal processing 
environment. The illustration of these potential benefits is simplified by considering 
a specific signal processing design problem: the problem that has been chosen for 
this illustration is the design of a detector for sonar FSK-code reflections. 

This section provides a brief description of ADE. It is guided by a discussion 
of two short sessions in ADE, one illustrating the programming of the environment 
and the other, its interactive use. 

2.4.1 An Overview of ADE 

ADE provides an integrated environment for numerical processing, algorithm defi- 
nition, signal and system property analysis, and algorithm rearrangement. The 
underlying signal representation is an object-oriented signal representation, satisfy- 
ing all the desirable properties discussed in section 2.3. Information about signal 
processing, used in property analysis and in algorithm rearrangement, is represented 
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in a rule-based system. Although the capacity for forward chaining5 is included in 
ADE, the majority of the environments resources are devoted to backward chaining 
from specific inquiries. Tools are provided within ADE for extending this rule base, 
both through the introduction of new signal and system classes and through the 
introduction of new properties and signal transforms. 

ADE is a descendant of the SPLICE and E-SPLICE environments. ADE 
inherits its basic approach to signal definition and representation from SPLICE. The 
influences of E-SPLICE and to a lesser extent PDA [9] are reflected in the structure 
of some parts of the rule base. In particular, as in E-SPLICE, ADE uses backward- 
chaining rules to describe the properties of signals. ADE, like E-SPLICE, supports 
multilevel matching within the patterns of these rules. The approach used in ADE 
for matching forward-chaining rules was introduced by Dove [9]. ADE makes use 
of a subset of QM [lo] and a limited number of functions from MACSYMA [ll]. 
QM is the product of research into qualitative mathematics. It represents, manipu- 
lates, and describes piecewise-continuous functions. A subset of QM is used to 
record and propagate constraints on symbolic numbers. ADE includes an extension 
to QM to support limited reasoning about symbolic integers as well as the continu- 
ously variable numbers. ADE also makes limited use of MACSYMA to simplify and 
factor the polynomials used in the characterization of z-transform signals. ADE is 
written in Symbolics Common Lisp [12]. This choice of language provides both the 
flexibility of a LISP dialect and support for object-oriented programming. 

The remainder of this section provides examples of the use of ADE in the 
context of the FSK-code problem introduced earlier. Examples are given of pro- 
gramming (algorithm definition), property analysis, and algorithm rearrangement in 
ADE. 

In the sonar imaging problem, an important problem is to find a way to achieve good 
spatial resolution without requiring a large, costly array and without missing tran- 
sients through the use of a swept beam. The first step in solving this problem is to 
select a method by which it will be solved. Although this selection draws heavily on 
signal processing experience and creativity, the selection process can be accelerated 
by providing a support environment in which the signal and system representations 
closely match the internal models used by the system designer. These representa- 
tions must change according to the problem at hand, since different problems give 

‘Forward chaining in a blackboard/rule-based system is the use of current information to deter- 
mine additional information, without requiring an inquiry to explicitly trigger that line of reasoning. In 
general, this approach triggers any rule whose preconditions are satisfied based on the current state of 
the blackboard. This contrasts with backward chaining, which starts from a question and then, based on 
the preconditions of rules that could answer that question, asks additional questions until a question is 
asked that can be answered. 
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rise to different signal models. To provide this range of representations, ADE allows 
the system designer to introduce his own signal and system definitions. For example, 
in the FSK-code detector shown in Figure 2.3, the incoherent combination of the 
matched filter outputs is modeled as a single processing block which follows, but is 
separate from, the matched filtering itself. To support this model of the detector, 
a new system class, INCOHERENT-COMBINATION, is defined in Figure 2.5. The 
definition relies on the composition of other, previously defined signal processing 
systems to provide the output signals with their observable characteristics: lines g-12 
of Figure 2.5 describe this composition. 

To simplify the programming task, signal and system definitions closely mimic 
the notational conventions used in signal processing. As illustrated by lines l-4 of 
Figure 2.5, signal and system definitions form new “classes” of signals and systems. 
Hierarchies of classes are used to make similarities explicit and to reduce the amount 
of coding required. Signals are formed by one of two paths: either as independent 
entities that are inherently defined, like an impulse or a complex-exponential se- 
quence, or as the output from a system that has been applied to some inputs. Some 
of the 43 inherent signal classes and the 169 system classes currently defined in ADE 
are listed in Table 2.2. 

Once all the appropriate signal and system classes have been defined, the 
process of creating and analyzing the signals and systems involved in the design 
problem is simplified. Figure 2.6 illustrates the design sequence. Line I-I of Fig- 
ure 2.6 shows the definition of a partially specified discrete-time signal, x[n], which 
is periodic and complex valued with both its real and imaginary parts in the range 
from -1 to +l. This description is only a partial description of the input since there 
are a large number of discrete-time sequences that satisfy all parts of this description. 
The resulting object, printed on line O-1, is an “abstract” signal. 

The FSK-code detector is compactly described in lines 1-2 and 1-3 of Figure 2.6. 
As can be seen by comparing these lines with the model for the detector shown in 
Figure 2.3, the computer representation and the designer’s representation are 
closely matched. As is shown in the remainder of this figure, ADE provides infor- 
mation about the properties of the output signals from this detector and about 
alternate implementations of the matched filters used in the detector. 

In more detail, lines 1-2 and Z-3 of Figure 2.6 create an incoherent detector for 
the set of 16 FSK codes, using a 16-point rectangular window to shape each frequency 
chip. The input to this detector is x[n]. The output from the modulated filter bank 
is a two-dimensional signal, YC. YC is used as the input to the incoherent combiner 
and the final output signal is Y. Lines I-4 and I-5 of Figure 2.6 request the range and 
periodicity of the output from the detector, Y. The range and periodicity of a signal 
are among the properties that can be explicitly requested. Signal properties, such 
as symmetry, sample type, and nonzero support, are explicitly available character- 
istics of every signal. Similarly, system properties, such as equivalent systems and 
invertibility, are explicitly available characteristics of every system. ADE determines 
the values of signal and system properties by using the property information explic- 
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itly included within the definitions of signal and system classes or, if this information 
is missing, by using the default value for the property. Some of the signal and system 
properties that are currently included in ADE were listed in Table 2.1. Tools are also 
available within ADE for adding other signal properties that could be useful to the 
particular problem under consideration (e.g., stationarity). 

Line 1-6 of Figure 2.6 requests a list of all the computationally efficient 
implementations that can be found for the matched filters, used in the detector. 
Computational efficiency is determined in ADE on the basis of memory require- 
ments and the required additions, multiplications, and memory references. Line O-6 
shows some of the efficient implementations generated by ADE. The given form of 
the modulated filter bank is not included in this list of implementations, since there 
are other implementations that are more computationally efficient. Instead, the list 
includes the classic FFT-based structure, described in section 2.2, and a variety of 
“pruned” FFT-based structures: one of the pruned FFT-based structures is shown 
in Figure 2.7.6 The pruned FFT implementations have the same underlying structure 
as the classic FFT implementation. The difference lies in the number of butterflies 
that are computed at each stage. For example, the pruned FFT. structure shown in 
Figure 2.7 has only one butterfly in the first stage, two in the second, four in the third, 
eight in the fourth, and so on, while the classic FFT structure has N/2 butterflies in 
each stage. As can be seen from the comparison of costs shown in Figure 2.7, a 
trade-off exists between the minimum number of memory locations, achieved by the 
classic FFT structure, and the minimum number of operation counts, achieved by 
the pruned FFT structure.’ 

Since the selection of the frequency-chip window affects both the range reso- 
lution and the signal-to-signal rejection of the sonar system, another two frequency- 
chip windows were considered to explore the trade-offs between resolution and 
signal-to-signal rejection: the 16-point Hanning window and the 32-point Hanning 
window with overlapping frequency chips within the FSK code.8 Figure 2.8 shows 
the pruned FFT structure generated by ADE for the 16-point Hanning window. The 
resulting structure consists of the pruned FFT structure of Figure 2.7 followed by 
frequency-domain convolution. Figure 2.9(a) shows the pruned FFT structure gen- 

‘Figure 2.7 shows operations of the form zi for positive values of i. These operations are (anti- 
causal) sequence advance operations and arise from the use of the anticausal window within the modu- 
lated filter bank (see line Z-2 of Figure 2.6). The use of the anticausal window within the modulated filter 
bank is the result of using a causal window for the frequency chips in the FSK codes [see (2.1)]. 

‘The memory counts do not include the registers necessary for storing the intermediate sequence 
values. If these additional memory locations were included in the cost structures, the amount of memory 
for the classic FFT structure using the method given by Singleton [ 131 and the pruned FFT structure would 
be identical. 

‘These requests for efficient implementations of the two Hanning-window modulated filter banks 
are not shown in Figure 2.6 since they are not substantially different in form from the request already 
shown in that figure. 
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Figure 2.8 The pruned FFT implementation of the modulntcd filter bank for a l&point 
Hanning window. 
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Figure 2.9 The pruned FFT implementation of the 16channel modulated filter bank using 
a 32-point Hanning window. 
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erated by ADE for the overlapping, 32-point Hanning window. The resulting struc- 
ture uses two pruned FFTs, one taken from Figure 2.7 and the other illustrated in 
Figure 2.9(b), followed by frequency-domain convolution. The modulated pruned 
FFT structure of Figure 2.9(b) computes a 16-point pruned FFT, offset by half a 
frequency bin. As with the rectangularly windowed design, the implementations that 
were found reduced the computational complexity of the matched filter bank to 

O(N)* 
It is interesting to note that, with the pruned FFT, the order of the com- 

putational complexity is actually reduced as well as the number of computations 
themselves. Specifically, the order is reduced from O(N*) for the direct-form imple- 
mentation or from O(N 1ogN) for the classic FFT implementation to O(N) for the 
pruned FFT implementation. The amount of computation that is required for the 
pruned FFT is actually identical to that of the recursive implementation and, as 
mentioned earlier, the pruned FFT structure has the advantage of being numerically 
stable while the recursive formulation is marginally unstable due to its reliance on 
pole/zero cancellation on the unit circle. 

Another interesting aside is that the pruned FFT structure has not been found 
in the currently published literature. Although other pruned FFT structures have 
been published [14, IS], these structures depend on the characteristics of the inputs 
as opposed to the characteristics of the desired outputs. Thus, in addition to the 
standard implementations, ADE generated a new structure for efficiently computing 
the outputs from a modulated filter bank. 

ADE generates equivalent implementations of an algorithm by testing and 
applying algorithm transformation rules. These rules are included within the defini- 
tions of signal and system classes. Detailed derivations of the pruned FFT implemen- 
tations of the modulated filter banks are provided in Appendix A. In the derivation 
of the pruned FFT implementation of the rectangularly windowed modulated filter 
bank, the actual transformation rule, which is crucial, is relatively straightforward. 
The crucial transformation rule simply pulls common shifts through a generalized 
shift-invariant system. With a generalized shift-invariant system, H{ }, if y(f) = 
w&(r), * * * ,x*(?)} then y(t - T) = H{x,(t - T), . . . ,x~(? - T)}. Lines 13-30 of 
Figure 2.10 show how the shift-invariant property of the generalized shift-invariant 
system is used in ADE to generate an equivalent form. By pulling all the common 
shift operations through the butterfly and twiddle stages of the classic FFT structure, 
the classic FFT structure collapses into the pruned FFT structure. The derivations 
of the pruned FFT implementations of the other two windows are longer and more 
involved but, again, rely only on relatively straightforward transformations. 

As illustrated with the rule describing the shift-invariant property of the gen- 
eralized shift-invariant system, the transformation rules that generate the equivalent 
implementations are relatively straightforward. However, as illustrated in sec- 
tion 2.3.4, the search process that must be used to discover and combine all the 
appropriate transformations is comparatively complex. The remaining sections of 
this chapter focus on this search process. 
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2.5 UNCCNSTl?AINED DEWIVATIION AND ~AN~~N~ 
OF EWlVALENT ALGCWIIWMS 

To simplify the development of efficient algorithms, an integrated signal processing 
environment should provide a high-level, signal processing “compiler.” This com- 
piler must make use of rules, such as the one shown in Figure 2.10, to explore the 
space of alternative implementations. This section and the next describe the struc- 
ture of the search space that is explored in finding the equivalent implementations 
of an algorithm. 

The task of finding alternate implementations of a signal processing expression is the 
same as finding all the algorithmic transformations that are applicable to the signal 
processing expression; to its input/output equivalent expressions; and to the sub- 
expressions used by these expressions. For example, to find the equivalent imple- 
mentations of the filter bank used in the FSK-code detector, all the applicable 
algorithmic transformations for the filter bank should be completed, as should the 
transformations on the modulated window sequences and the input sequence. %n 
addition, once an alternate implementation is generated, all of the algorithmic 
transformations that are applicable to this new expression or to one of its subexpres- 
sions must also be applied. Thus, equivalent implementations of a signal processing 
expression can be obtained in any of a variety of ways: a transformation can be 
applied to the original signal processing expression itself; a subexpression of the 
original expression can be replaced by an equivalent implementation of the subex- 
pression; or either of these approaches can be applied to one of the newly generated 
equivalent implementations of the signal processing expression. 

To simplify this discussion, a graphical representation of the search process is 
presented in Figure 2.11. The problem of finding the equivalent forms of a signal 
processing expression, without consideration of its subexpressions, can be repre- 
sented graphically as a planar net, as shown in Figure 2.11(a). The nodes of the net 
represent the signal processing expression and its equivalent forms. The directed arcs 
connecting the nodes within the planar net represent the application of simple 
transformation rules. For example, in Figure 2.11(a), the modulated filter bank 
(node A-l) is replaced by a short-time Fourier transform (node A-2) using a rule 
included in the definition of the system class MODULATED-FILTER-BANK: this 
rule is shown below the transformation arc. 

The new nodes that result from algorithm transformations can themselves be 
used as the starting point for other transformations. An example of this recursive 
transformation is also shown in Figure 2.11(a): the modulated filter bank is first 
replaced by a short-time Fourier transform, which is then expanded into the basic 
addition, subtraction, time shifts, and multiplications (node A-3) that make up the 
short-time Fourier transform. 

Each of the nodes of the planar net can also be viewed as a combination of 
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subexpressions: the subexpressions are the inputs to the generating system. For 
example, as shown in Figure 2.11(b), the four inputs to the BANK-OF- 
SEQUENCES system in node A-3 can each be manipulated independently. In 
particular, each of these four expressions can be replaced by any of their equivalent 
implementations, without changing the input/output mapping of the overall al- 
gorithm. Thus, this replacement provides additional equivalent implementation to 
the original signal processing expression. 

Graphically, requesting the equivalent forms of the inputs to the generating 
system of a signal drops the problem down to another set of nets and again tries to 

(define-system-class 
(modulated-filter-bank window n) (input) 

. . 
(goal equivalent-form 

:name as-stft 
:object ?self 
:answer (output-of (short-time-ft (reverse window) n) 

input)) 

ldefine-system-class (short-time-ft window ft-length) (input) 
. . 
(goal equivalent-form 

:name as-bank-of-sequences 
:object ?self 
: answer (map-over ‘bank-of-sequences k 0 ft-length 

(fetch-sequence self k)) 
. 1 

(A-l) = x (modulated-filter r,[-n] 4) 

64-2) 

(A-3) = x 

z x (short-time-ft rj[n] 4] 

r4[n] = (rectangular-window 4) 

(4 

Figure 2.11 A net representation of the search for equivalent forms. This figure shows an 
example of a search for equivalent forms. Each node (e.g., A- 1 or D-4) represents an expres- 
sion. The name for each node consists of a letter (A through E) and a number. The letter 
indicates which expressions are equivalent (e.g., D-4 is equivalent to D-5) and the number 
indicates the order within the sequence of manipulations (e.g., D-5 is modified to create D-6). 
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Figure 2.11 (continued) 
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find connected nodes. In our example, this process generates four new subsearches 
for the equivalent forms of the four inputs to the BANK-OF-SEQUENCES system 
in node A-3: Nodes B-4, C-4, D-4, and E-4 represent those inputs in Figure 2.11(b). 
The subsearches must also find all equivalent implementations of their given al- 
gorithm using simple transformations, repeated transformations, and subexpression 
transformations. 

Once all the equivalent forms of the inputs are found, these equivalent forms 
can be used to replace the original input expressions. This replacement process is 
shown in Figure 2.11(c) as a projection of the nodes on the lower planar nets back 
into the original net: nodes B-5, C-4, D-6, and E-4 are used as inputs into the 
BANK-OF-SEQUENCES system, resulting in the new expression, node A-7. As 
with this example, the projection upward often generates new nodes in the original 
net (node A-7). A new node in the original net is generated whenever the input 
replacement results in an expression that has not already been generated through 
some other transformation path. These new nodes are equivalent forms of the 
original expression: thus, the new nodes can also be the starting point for further 
transformations. 

This process of repeated transformation and subexpression transformation 
continues until no new equivalent expressions (nodes) can be found. 

25.2 Infinite Expansion to the Search % 
for Equivalent Algorithms 

Two major difficulties with the search process described above are apparent after 
careful consideration: the possibility of the infinite expansion of the search space and 
the finite but exponential growth of the space due to the separate manipulation of 
subexpressions. The search space will expand indefinitely, if a simple transformation 
or a combination of simple transformations repeatedly introduce operators that have 
no net effect (e.g., a delay operator followed by an advance operator). This difficulty 
is considered briefly in this subsection. The problem of limiting the exponential 
growth is the subject of the next section of this chapter. 

The transformations used in generating equivalent implementations often 
result in signal processing algorithms whose complexity is greater than the manipu- 
lated algorithm. For example, consider the problem of finding equivalent implemen- 
tations of the matched filters for the frequency chips in the rectangularly windowed 
FSK-code detector. One of the rearrangements that is found is shown in Fig- 
ure 2.12(a). The subexpressions of this implementation will be manipulated, due to 
the combination of recursive search and subexpression manipulation. One of the 
implementations discovered by this process is shown in Figure 2.12(b): this structure 
results from the application of a rule shown on lines 13-30 of Figure 2.10. Applying 
repeated transformation and subexpression manipulation to the structure shown in 
Figure 2.12(b) will result in, among others, the structure shown in Figure 2.12(c). 
In fact, the recursive transformations and the increasing complexity of the algorith- 
mic description would result in the infinite expansion of the search space. 
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Figure 2.12 An example of increasing complexity resulting from equivalent-form 
manipulations. 

As can be seen from this example, care must be taken to limit the complexity 
of the algorithms before they are used as starting points for further transformations. 
In ADE, simplifications are used to control the complexity of the signal processing 
expression. SIMPLIFICATION, when applied to a signal processing expression, 
returns the simplest direct description of the expression that the environment can 
find. The simplest description of a signal processing expression is obtained both by 
simplifying its subexpressions and by repeatedly simplifying the modified descrip- 
tion. The actual simplifying transformations are encoded in ADE using over 300 of 
the 850 rules currently included. 

The simplification process in ADE has two potential shortcomings. First, a 
good simplification can be missed because the steps required to generate the simpli- 
fied form include steps that would cause subexpressions to not be in their simplified 
form. This restriction is imposed in order to prevent an unlimited potential growth 
in the number of expressions that must be considered. Second, and perhaps more 
fundamentally, ADE defines simplifications by a set of rules. It does not have any 
hooks for the user to define in what ways an expression is simpler than another one. 
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Hence, it is possible for ADE to “simplify” an expression to a form that is not 
appropriate. 

Although we have pointed out that unconstrained algorithm manipulation has 
limitations, we must also point out that in many cases it is still a valuable tool. One 
such example is provided by the noninteger sampling rate conversion problem 
introduced in section 2.2. By applying unconstrained manipulations and simplifica- 
tions to the straightforward implementation of a noninteger sampling rate conver- 
sion [shown in Figure 2.1(a)], ADE can automatically derive the computationally 
efficient implementation shown in Figure 2.13.9 While the structure shown in Fig- 
ure 2.13 can also be derived using the constrained manipulations, described in the 
next section, there are cases when efficient implementations cannot be derived using 
constrained manipulation. One such example is the efficient implementation of 
maximally decimated, octave band filters (Figure 2.14). 

2.6 CONSTRAINED DERIVATION AND RANKIN OF EQUIVALENT 
ALGORITHMS 

The search for equivalent implementations of a signal processing expression must 
consider the equivalent implementations of the subexpressions as well as the com- 
plete expression itself. Since each of the subexpressions is independently manipu- 
lated and their equivalent forms are independently recombined to form new 
equivalent expressions, the size of the search space under consideration grows 
exponentially with the number of subexpressions. To illustrate, consider the problem 
of implementing the full FSK-code detector for 16 channels. Five independent 
descriptions of a simple, finite-length convolution are included in ADE: direct-form 
convolution, overlap-save convolution, the Fourier-domain representation of convo- 
lution, the z-domain representation of convolution, and the representation of con- 
volution as the sum of scaled, shifted versions of the input. Thus, using these 
alternate forms as inputs into the incoherent summation, there will be 51h = 10” 
equivalent forms to consider. None of these implementations exploit the special 
structure of the modulated filter bank: the actual number of equivalent implemen- 
tations that have to be considered is more than 10”. Each of these implementations 
would then be reconsidered to see if any additional equivalent forms could be found, 
due to interactions between the implementations of the matched filters and the 
implementations of the incoherent processing. As illustrated by the projected size 
of the design space, some set of constraints must be imposed on the search process 
to avoid this exponential growth. 

‘Unconstrained manipulation was first shown to be effective by Myers [2] using a 2 : 3 noninteger 
sampling rate conversion in E-SPLICE. E-SPLICE generated a multirate structure of the same form as 
the one shown in Figure 2.13 for a 2 : 3 rate conversion. This demonstration of the potential of high-level 
signal processing compilation was made even more convincing by the subsequent publication of an 
independent article presenting this new type of polyphase structure [ 161: E-SPLICE actually anticipated 
results from research in the area of noninteger sampling rate conversion algorithms. 
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h [20n] 

- h [20n + 41 -----c 

- h [20n + 81 - 

h [20n + 121 /--I 

Figure 2.13 An efficient implementation of the 4 : 5 noninteger sampling rate 
conversion. 

2.6.4 Approaches for Avoiding Exponential Growth 
of the Algorithm Design Space 

One possible strategy for limiting the exponential growth in searches for efficient 
implementations relies on the cost measure of each subexpression to heuristically 
prune the space. Instead of enumerating all the equivalent implementations of a 
signal processing expression and then filtering out the inefficient and uncomputable 
structures using the overall cost measure, this strategy would immediately prune the 
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(a) Direct implementation of maximally 
decimated octave-band filters 

(b) A more efficient implementation of maximally decimated octave band filters 
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number ofsubexpression implementations, prior to their upward propagation, based 
on their relative costs. This approach relies on the assumption that, when propagat- 
ing two alternate implementations upward, the more expensive implementation will 
not be incorporated into any of the efficient implementations of the enclosing 
expression. Unfortunately, this pruning strategy suffers from the interaction of 
subexpression costs: the cost of using one implementation of a subexpression is often 
ameliorated by reusing part or all of the subexpression in some other part of the 
enclosing expression. For example, the computational savings of the FFT-based 
STFT results from the interaction of the computational cost of the subexpressions: 
it is the reuse of the partial summations which reduces its computational cost 
to O(N log/V). Thus. the contribution of a subexpression to the overall cost of 
an enclosing expression is not independent of the other parts of the enclosing 
expression. 

The approach that ADE takes to limiting the search space is to attempt to 
exploit the internal regularity of signal processing algorithms. Signal processing 
algorithms are often described at different levels of detail. For example, the four- 
point, rectangularly windowed, short-time Fourier transform of a sequence can be 
described by either of the structures shown in Figure 2.15. The structure in Fig- 
ure 2.15(a) is by definition the STFT. Figure 2.15(b) shows a fully expanded short- 
time FFT structure, i.e., one in which common subexpressions are not combined. 
Starting from the high-level description of an algorithm, the regularity in the low- 
level computational structure can often be asserted. For example, when the SHORT- 
TIME-FT system is expanded into the structure in Figure 2.15(b), the underlying 
regularity inherent in Figure 2.15(b) can be noted. By enforcing these internal 
correspondences in the low-level descriptions, the space of equivalent forms that is 
explored can be drastically reduced. This approach to pruning the search is heuristic. 
However, the regularity of the computation suggests that the efficient implementa- 
tions will reflect the same regularity: if separate sections of an algorithm are very 
similar, then the efficient implementations of these separate sections are likely to 
coincide. 

To illustrate what is meant by internal regularity within an algorithm, consider 
the description of the short-time Fourier transform given in Figure 2.15(b). This 

Figure 2.14 Implementation of maximally decimated, ideal, octave-band filters. Mssimally 
decimated octave-band filters are useful in speech and image coding as well as perceptual 
modeling. A simple and direct implementation of maximally decimated. octave-band filters. 
using ideal low- and band-pass filters, is shown in part (a) of this figure. An implementation 
that is more computationally efficient is shown in part (b): here the band-pass filters in the 
octaves above base-band have been divided into cascades of high-pass filters. followed by 
decimation, followed by another stage of high- and low-pass filters. This implementation is one 
example of a computationally efficient implementation which would not be found using 
constrained manipulation as it is described in section 2.6 of this chapter. The reason that this 
implementation would be missed using constrained manipulation is that each branch of the 
algorithm is treated differently: the branch that computes y, is unchanged. the branch that 
computes y, is separated into two stages of filtering/decimation, the branch that computes y, 
is separated into three stages of filtering/decimation, and so on. 
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Chap. 2 

Figure 2.45 Two alternate descriptions of a four-point, rectangularly windowed 
short-time Fourier transform. 

implementation of the short-time Fourier transform is provided explicitly by one of 
the transformation rules included in the definition of SHORT-TIME-FT. The reg- 
ularity of this implementation is also explicitly noted by the rule. In particular, the 
similarity of the sequences feeding into the BANK-OF-SEQUENCES is pointed out 
using a “correspondence constraint”: by placing a correspondence constraint on the 
subexpressions feeding into the BANK-OF-SEQUENCES, the similarity of these 
subexpressions is recorded. As will be discussed later in this section, a correspon- 
dence constraint forces the similar subexpressions to be subject to a single series of 
transformation rules, so that, if a transformation is applied to one of a set of similar 
expressions, that transformation must also be applied to all the other members of 
the set. 
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In addition to the point of similarity at the BANK-OF-SEQUENCES, the 
structure shown in Figure 2.15(b) has two other levels of similarity at the inputs to 
the addition/subtraction systems: at each of the two butterfly stages, the first addend 
into the kth butterfly is similar to the second addend into the same kth butterfly. 
Thus, more correspondence constraints are placed on the inputs into each of these 
systems. Through these correspondence constraints, the similarity of the corre- 
sponding subexpressions is explicitly noted, resulting conceptually in the manipula- 
tion of Y[~I,R], &[n], &,r[n], Qk,~[n], and fi.J~] where 

Y[n*, k] = &*[q] 

Sk[n] = R,,,[nl + Rk,,[fl] 

&~[n] = e-j(2n’4)fk Qk,,[n] 

Qk.rb] = P,.,,"[n] + Pk,/,,[n] 

PkJ,[fl] = x[n + 1 + 24 

By enforcing these constraints, the rearranged algorithms will also have a regular 
internal structure and the number of independently manipulated subexpressions is 
reduced, in this case from O(N’) to O(log1v). 

2.6.2 Algorithmic Transformations in the 
of Correspondence Constraints 

This subsection examines the process of finding equivalent forms of an algorithm in 
the presence of correspondence constraints. 

When a correspondence constraint is imposed, it is imposed on the inputs to 
a system. For example, a correspondence constraint was imposed on the inputs to 
the BANK-OF-SEQUENCES in Figure 2.15(b), creating nine sets of similar se- 
quences: Sk, Rk,(), Rk.,, Qk.0, Qk.17 pk.O.0, pk.0.1, pkJ.0, and pk.1.1. Additional correspon- 

dence constraints were also imposed on the inputs for Sk, reducing the number of 
separately manipulated sets of signals to five (Sk, &,, Qk,[, Pk,[.O, and Pk.,, J and on 
the inputs for Q k,[, further reducing the number of separately manipulated sets to 
four (Sk, Rk.h Qk.1, and Pk.,,m). As mentioned above, imposing these constraints 
forces the similar signals to be manipulated as a set: the transformation rules are 
applied to the set of similar signals, instead of just to the individual signals. To 
continue the STFT example, if the rule shown on lines 13-30 of Figure 2.10 is applied 
to one of the sequences labeled Q k,[, then this same rule must be applied to all the 
other sequences labeled Q k,J. The remainder of this subsection considers the changes 
required in the recursive search and subexpression manipulation, described in sec- 
tion 2.5, to accommodate these requirements. 

The approach to finding equivalent forms described in section 2.5 involved 
both recursive search and subexpression manipulation. The recursive search, in 
which newly generated equivalent forms act as the starting point for further trans- 
formations, is used without modification in searches for constrained equivalent 
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Figure 2.16 (continued) 
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(A-14) 

(Direct-form implementation of 4-point STFT) 

Figure 2.46 (continued) 

D-4. The structure D-4 is transformed into the structure D-5 and this is used to 
replace subexpression D-4 in the expression C-3, resulting in the structure C-6. The 
structure C-6 is then transformed into the structure C-7, which then replaces subex- 
pression C-3 in the expression B-2, resulting in the structure B-8. The structure B-8 
is transformed into the structure B-9. The subexpression F-10 is then extracted from 
the expression B-9, manipulated into subexpression F-l 1, and replaced back into the 
expression B-9, resulting in the structure B-12. Next, the structure B-12 is trans- 
formed into the structure B-13 and this structure replaces subexpression B-2 in the 
expression A-l, yielding the structure A-14 as the final result. 

As mentioned earlier, the actual transformation rules that are used to find 
constrained equivalent forms and constrained simplifications are the same as those 
used to find unconstrained equivalent forms and unconstrained simplifications, 
respectively. It is the manner in which these transformations are combined that 
provides the distinction between the constrained and unconstrained searches. In 
particular, in unconstrained searches, all subexpressions are manipulated indepen- 
dently while in constrained searches, similar subexpressions are manipulated as sets. 

As a measure of the importance of imposing correspondence constraints, we 
note that for the modulated filter bank example of section 2.4, the number of 
possible structures using unconstrained manipulation is more than 1019 for the 
rectangular-window matched filters and it is more than 1O58 for the Hanning-window 
matched filters. Using constrained manipulations, the numbers are 13 and 20, 
respectively.‘” Thus, the use of regularity constraints is essential for solving these 
problems. 

“‘The large number of structures generated by unconstrained manipulation is a result of consid- 
ering all possible combinations of the alternate implementations of the subexpressions. Since there are 
16 branches with 16 inputs each, the number of possible combinations grows very quickly. 
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2.6.3 Propagating Correspondence Constraints 
to a Modified Structure 

When constrained expressions are manipulated, new expressions are often gener- 
ated on which the same correspondence constraints should be imposed. To illustrate, 
consider the manipulations shown in Figure 2.16. The result of these manipulations 
is a direct-form implementation of the short-time Fourier transform (node A-14). In 
order to reflect the correspondence constraints of the original structure, this new 
bank of sequences should also include two correspondence constraints: the inputs 
to the bank of sequences should be constrained to coincide as should the inputs to 
the addition systems. Unless these constraints are imposed, this new form will 
introduce unconstrained structures into the constrained manipulations. ADE prop- 
agates structural constraints to new expressions automatically. When a constrained 
expression is manipulated, the inputs that are constrained to be parallel are noted 
prior to manipulation. After each manipulation of a constrained structure. ADE 
attempts to impose the analogous correspondence constraints on the modified 
structure. 

2.7 CQNTRIBUTIQNS AND LIMITATIONS 

Our goals in this chapter were to describe the mechanisms by which an integrated 
signal processing environment could manipulate signal processing algorithms and to 
demonstrate the potential of these manipulations. ADE has been used within this 
chapter to demonstrate this potential. 

ADE makes extensive use of general signals, rules, and regularity constraints. 
General or abstract signals provide the variables in the manipulation of algorithms 
while the rules in ADE about signal processing provide the information required to 
manipulate this “signal processing algebra.” Regularity constraints limit the expo- 
nential expansion that manipulation of subexpressions introduces by exploiting the 
internal regularity of signal processing algorithms to limit the size of the explored 
search space. This regularity in the low-level signal processing descriptions is noted 
using information provided by the higher level description of the same operation. 
Without these constraints, many FFT-based and polyphase-based algorithms would 
be beyond the scope of consideration, due to exponential expansion of these design 
spaces. 

ADE demonstrates the potential of integrated signal processing environments. 
Its algorithm rearrangement capabilities have been used to generate innovative, 
computationally efficient implementations in two well-developed areas of signal 
processing. However, much work remains to be done to transform the concepts 
embodied in ADE into practical signal processing workstations: 

Q The user interface should be made more accessible and pleasant. 

@ A fast algorithm-rearrangement facility, providing only well-known algorithm 
implementations, should be included as an alternative to the current rearrange- 



74 Computer-Aided Algorithm Design and Rearrangement Chap. 2 

ment facilities which do constrained searches of the full design space. This 
facility would provide quick compilations by ignoring the possibility of efficient 
nonconventional implementations. An example of this facility would be one 
that would provide the classic implementations of a noninteger sampling rate 
conversion [e.g., Figures 2.1(b) and (c)] without exploring the full design 
space. This facility would miss the more nonconventional implementations 
(e.g., Figure 2.13). 

l The derivation of explicitly recursive algorithms, such as the one shown in 
(2.3)-(2.6), is an unexplored area of research. 

l Regularity within expressions should be automatically detected. In ADE, the 
regularity of a signal processing algorithm must be explicitly pointed out. 
Although propagation of the regularity constraints, both within the algorithm 
and to modified expressions, is supported by the environment, the initial 
description of the constraints must be done manually. 

As can be seen by the breadth of this partial list of “things to do,” much work 
still remains to be done to achieve a signal processing environment that facilitates 
the algorithm manipulation as well as numeric processing of signals and algorithm 
definition. However, as asserted previously, the rewards for research in this field 
have thus far been high. 
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Appendix A. 1 The sequence of transformations used in going from the 16-channel 
rectangular-window modulated filter bank to the pruned FFT structure shown in 
Figure 2.7. 

i I 

bank of sequences 
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Appendix A.2 The sequence of transformations used in going from the l&point 
short-time Fourier transform with a l&point Hanning window to the structure sho:t:n 
in Figure 2.8. 

-4 
16-point short-time FT 

I (causal-hanning-window-sequence 16) 

n short-time FT output equivalent-form rule 
“using-ID-FFT” 
(see development labelled “ID FFT transformations”) 

r ----- 
1 

+ simplification ---l 
t . 

scale 

-LE 
- 112 

c- scale 
112 

- 

6 Transformations shown in Appendix A- I 

F 
Structure shown in Figure 2.8 

IID FFT transformations 

Let “token” represent the abstract discrete-time sequence generated bv the 
short-time Fourier transform output equivalent-form rule “using-Id-fft<” 

r-- 
I (causal-harming-window-sequence 16) 
L---------------J 

causal harming-window sequence 
equivalent-form rule “master-copy” 

+ simplification 
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a 

causal hanning-window sequence 
equivalent-form rule “master-copy” 

+ simplification 

r------------------------- 

causal-rectangular-window-sequence 16) - 

L----_-__-_-_-------------~ 

commutative. associative system output 
equivalent-form rule “self-application” 

a 

cosine sequence equivalent-form rule “master-copy” 
+ simplification 

r-------------------------------- 
1 

(causal-rectangular-window-sequence 16) 

(constant-sequence I) 

1 (complex-exponential-sequence $) 

complex-exponential-sequence 

a 

additive-system output 
equivalent-form rule “added-input” 

+ simplification 

,“..&I. r 

(causal-rectangular-window-sequence 16)--c I 

r -----.------------- tsap 

(causal-rectangular-window-sequence 16) 

(complex-exponential-sequence 3) --c 

;( complex-exponential-sequence 
L -II 

L-l L------------------------J 
a additive-system output 

equivalent-form rule “added-input” 

(causal-rectangular-window-sequence 16) .-..-.. 4i!?H-l 
I 
I token --t 
1 (causal-rectangular-window-sequence 16) -W n -- c 

I (complex-exponential-sequence s) -- 
I 

/( 

token - I 

causal-rectangular-window-sequence 16) -+ n - 

1 (complex-exponential-sequence + ) ---)-- 
L-------------------------------------- i 

a 

additive-system output 
equivalent-form rule “added-input” 

+ simplification 
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additive-system output 
equivalent-form rule “added-input” 

+ simplification 
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(causal-rectangular-window-sequence 16) 
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a additive-system output 
equivalent-form rule “added-input” 
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c scale 
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a FFT output equivalent-form 
rule “modulated-input” 
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(causal-rectangular- 
window-sequence 16) 
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Appendix A.3 The sequence of transformations used in going from the 16-paint 

short-time Fourier transform with a 32-point Harming window to the structure shown 
in Figure 2.9. 

short-time FT output equivalent-form rule “using-Iq:FFT 
. . 

(see development labelled “ID FFT transformations ) 
+ simplification 

l--ix-n- 
c scale 

- 112 

two applications of 
2d-window output equivalent-form rule “shifted-input” 
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two applications of 
2-d-window output equivalent-form rule 

“shifted-input” 
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structure shown in Figure 2.9 (a) 

ID FIT transformations 
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ID FFT transformations continued: manipulation of structure below 
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ID FFT transformations continued: manipulation of structure below 
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shift FFT - 

token- fl - l6 --t l6 

(constant-sequence I) - 

(complex-exponential-sequence 3) -A--- r;--@--__ 

c- 
scale 

(complex-exponential-sequence + )-w - l/2 
I 

a 

two applications of 
additive-system output equivalent-form rule “added-inputs” 
+ two applications of 
additive-system output equivalent-form rule “shifted-added-inputs” 

with simpliftcation between 

-r----in 
token 

(causal-rectangular-window-sequence l6)4 shift - I6 

token --c-‘l 

(causal-rectangular-window-sequence 16) A shift 

(complex-exponential-sequence 
16 - 

FFT c- 
I6 

I 1 

(causal-rectangular-window-sequence 16) 

(complex-exponential-sequence + ) 

a three applications of 
generalized shift-invariant system output equivalent-form rule “single-shifted-input” 

+ simplification 
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a three applications of 
gcneralizcd shift-invariant system output cquivalcnt-form rule “single-shifted-input” 

+ simplification 

(caus31-rectangular-~ 

r---- ------------ --------- 

I token 

- /E 1 (causal-rectangular-window-sequence 16) 

I (complex-exponential-sequcncc >) 
L ----- ---_----2--. 

-I 

token shift I6 

(causal-rectangular-window-sequence 16) 

(complex-exponential-sequence + ) 

a FFT output equivalent-form rule 
“modulated-input” 

token shift I6 

(causal-rectangular-window-sequence 16) 
FFT 

I6 

token shift Ih 
FFT 

I - I I 

(causal-rectangular-window-sequence Ih)-+ n Ih 
(circular-shift 

-I 16) h-l 
(complex-exponential-sequence * ) +J’l 

JL 

token shift I6 
scale 
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(causal-rectangular-window-sequence 16) 

(complex-exponential-scquencc + ) 

c 

fl 
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