2

COMPUTER-AIDED ALGORITHM
DESIGN AND REARRANGEMENT

» Michele M. Covell
SRI International

« Cory S. Myers
Lockheed Sanders, Inc.

« Alan V. Oppenheim
Massachusetts Institute of Technology

2.4 INTRODUCTION

The design of signal processing systems typically involves a high-level specification
of the requirements of the system, development of an appropriate algorithm or set
of algorithms to accomplish these requirements, and the implementation of the
algorithms in an appropriate technology. Often these stages are not independent,
and in particular, the detailed structure of the algorithms for implementing the
system needs to take into account a variety of cost measures and options relating to
system requirements, such as speed, modularity, and so on, and a variety of archi-
tectural constraints or technologies available for the implementation. For these
reasons, it is important that algorithm design explore a wide variety of implementa-
tions which are found by exploiting the underlying mathematics of signal processing
and taking into account a variety of cost measures. This is usually done by a design
engineer with a detailed knowledge of and insight into a variety of transformations.
From an input/output point of view, these transformations result in equivalent signal
processing operations, but may have very different implications with regard to
various cost measures.

In carrying out signal processing system design, there are a few design tools
currently available, but these primarily provide a convenient environment for writing

30

Covell, Myers, Oppenheim, "Computer Aided Algorithm Design and Rearrangement," in Symbolic and Knowledge-Based Signal Processing, Oppenheim/Nawah eds., (c) 1992. Electronically reproduced by permission of Prentice Hall, Upper Saddle River, New Jersey.

Sec. 24 Introduction - 31

programs or for testing algorithms on data. There are no systems available presently
that remap signal processing algorithms, specified at a high level of abstraction, to
algorithmic descriptions that are more efficient in the context of particular imple-
mentational or architectural constraints. Such a design environment, if successful,
might generate designs that improve on those that would be generated by experi-
enced systems designers. A more likely and also highly desirable outcome, at least
in the short run, is an environment that, with modest human intervention, achieves
fast designs of signal processing algorithms that are reasonably efficient in relation
to hand designs by sophisticated systems designers. The potential ability to do this
in a signal processing context stems from the fact that, for signal processing, algorith-
mic transformations tend to follow a clearly defined set of mathematical rules. Based
on these rules, the space of equivalent algorithms can, in principle, be explored to
determine those that are most efficient using appropriate cost measures.

This chapter attempts to demonstrate both the feasibility and the advantages
of a signal processing design environment which incorporates symbolic algorithm
manipulation along with numerical processing. In particular, we focus on the prob-
lem of developing automated tools to support algorithm manipulation. As viewed
in this chapter, algorithm manipulation includes property and transform analyses
and algorithm rearrangement. Property and transform analyses provide information
about an algorithm or its output signal. For example, determination that the output
of an FFT will be conjugate symmetric because its input is real, is property analysis.
Some examples of properties that are widely used in signal processing are computa-
tional cost, stability, causality, symmetry, linearity, and time-invariance. The use of
a z-domain representation of a linear, time-invariant system to determine stability
is an example of transform analysis. An example of algorithm rearrangement is
shown in Figure 2.1. Figure 2.1(a) describes one implementation of a noninteger
sampling rate conversion: upsample by five, low-pass filter, and downsample by
four. This simple description of a noninteger sampling rate conversion is easily
designed and implemented but is less computationally efficient than the implemen-
tations shown in Figures 2.1(b) and (c), which also provide 4 : 5 noninteger sampling
rate conversions. The desired capabilities of an environment that integrates al-
gorithm definition, manipulation and analysis, along with numerical processing, are
discussed in section 2.3, along with the constraints that these capabilities impose.

In order to demonstrate the advantages of a design environment that combines
symbolic algorithm manipulation with numerical processing, two application areas
are considered: noninteger sampling rate conversion and code-division sonar imag-
ing. Both of these application areas are discussed in section 2.2. Algorithms for these
applications are defined and manipulated in ADE [1]. ADE (A Design Environ-
ment), described in more detail in section 2.4, is an experimental environment that
shows the feasibility of a signal processing workstation with integrated tools for the
specification of algorithms, computer-aided analysis, and manipulation of those
algorithms, as well as application of the algorithms to numerical sequences.

ADE is based on E-SPLICE [2], the first system to demonstrate automated
property analysis and algorithm manipulation for digital signal processing. ADE and

32 Computer-Aided Algorithm Design and Rearrangement Chap. 2

h4n] - h[5n]
—’-E —*hl4r1+1]~>z h(5n + 1] > 14—
— hi5n + 2] b=
— hl4n + 2] =
15—»‘h[n]—> 14— tn + 21 hi5n + 3] =
| flan + 31 ™ hi5n + 4] -

(a) (b) ©

Description of operations

— % xpln]
x{n] —Jh ()} yin] = x(a) * hin] 0 }”m] ¥InM + i1 = x;(n]

. O0<si< M
xin) =~/ | yin) = x[n = 1) Xy In] ==

x [ﬁ] Integer M"—l

—] = yolnl .
x[n] E_' ylm 0 Otherwise x|m] y;,fn] = x[Ln — i]
. 0<i<lL

x[n] |L = ylm] = x[L m] —y,_,[n]

Figure 24 Alternate implementations of a 4: 5 sampling rate conversion.

E-SPLICE are the results of a sequence of research efforts into integrated signal
processing environments. These research efforts started in the late 1970s with
Kopec’s development of SRL [Chapter 1 this volume; 3]. SRL provides data abstrac-
tions that both reflect the basic characteristics of signals and support numeric
manipulations. SPLICE [2, 4] resulted from an effort to improve the computer
representation of signals beyond the work that had already been done by Kopec.
Subsequently, with E-SPLICE, Myers [2] expanded the scope of the software
environment to include symbolic manipulation of algorithms in addition to the
previously supported numerical manipulation of signals. ADE [this chapter; 1]
refines the symbolic rearrangement capabilities of E-SPLICE, making possible the
manipulation of large signal processing expressions.

2.2 SIGNAL PROCESSING TOPICS USED IN EXAMPLES

In this chapter, two examples, noninteger sampling rate conversion and sonar FSK-
code detection, are used to illustrate the potential of an integrated signal processing
environment that combines algorithm definition, manipulation, and analysis with
numerical processing. These applications are described in this section.

2.2.1 Noninteger Sampling Rate Conversion

Discrete-time sequences are often used to represent a bandlimited, continuous-time
signal. Often, it is desirable to change the sampling rate that defines the conversion
between discrete and continuous time. For example, film is shot at 24 frames/sec.

xin]

Sec. 22 Signal Processing Topics Used in Examples 33

WWWWW@Q

1017 1¢
0 27 15 0 27 hin] 0 2w

|4

Figure 2.2 Effect of a 4:5 sampling rate conversion in the Fourier domain.

To display the film at the correct rate on American television, the temporal sampling
rate must be changed to 30 frames/sec.' This 4 : 5 sampling rate conversion can be
implemented using the structure shown in Figure 2.1(a). The effect of these opera-
tions in the frequency domain is shown in Figure 2.2. The low-pass filter between
the upsampling and downsampling operations is necessary to prevent temporal
aliasing. Unfortunately, this filter operates at a high data rate: for each four input
points and five output points of the overall system, twenty input and output points
pass through the low-pass filter. Figures 2.1(b) and (c) show two alternate implemen-
tations in which the filter runs at lower rates. Figure 2.1(b) shows a polyphase
implementation of the filter/downsample part of the sampling rate conversion: the
four, shorter filters each operate at one fourth the rate of the filter in Figure 2.1(a)
and, if the convolutions are implemented directly, the computational requirements
are reduced by a factor of four from the original implementation. Figure 2.1(c) shows
a polyphase implementation of the upsample/filter part of the sampling rate conver-
sion: the five, shorter filters each operate at one fifth the rate of the original filter
and, again assuming direct implementation of the convolutions, the computational
requirements are reduced by a factor of five.

The two polyphase implementations shown in Figure 2.1(b) and (c) are well
documented in multirate filtering literature [5]. Another polyphase implementation
for noninteger sampling rate conversion, which has only recently been documented

in signal processing literature, was generated by E-SPLICE [2]: this alternate imple-
mentation will be introduced and discussed in section 2.5.

2.2.2 Modulated Filter Banks and Shori-Time Fourier
Transforms

Conventional sonar imaging systems achieve spatial resolution either through the use
of a single, swept beam or through the use of multi-element arrays. These tech-
niques, while highly successful, present some inherent difficulties. In the case of the
single swept beam, the time required to scan through the desired aperture can result
in the failure to detect transients. When multi-element arrays are used instead, the
hardware requirements necessary to achieve high resolution can result in a large,
costly system. Jaffe and Richardson [6] propose an alternative to these two tech-
niques using the simultaneous transmission of a set of coded waveforms.

The transmitter in the proposed system is a set of N transducers, each illumi-
nating a different direction and each transmitting a distinct signal, §; for

"Each frame in American television is made up of two vertically interlaced fields. Sixty fields are
displayed per second.

34 Computer-Aided Algorithm Design and Rearrangement Chap. 2

i =0,...,N—1. One wide-beam hydrophone is used as a receiver. Multiple-
hypothesis testing is then used to detect and discriminate the returns from the
separate beams. In order to achieve good spatial resolution, the set of signals
{So, . .., Sy -1} must have good signal-to-signal rejection for all possible time delays.
In addition, to achieve good range resolution, each signal should have a sharply
peaked autocorrelation function. Jaffe and Richardson [6] propose a specific set of
FSK codes with these properties:

N-1 '

Sty = 2 Re{P.(t)e”*™} fori=0,...,N-1
k=10

Pi(r) = G(t = kT)

where | = p;(k) provides, for each i, a different permutation of the numbers
0,...,N — 1 versus k and

Ci(t) = w(t)e Dl
where w(t) =0 fort <Oandfort=T

Specifically, each signal is made up of a sum of N individual, uniformly spaced
frequency bursts (commonly referred to as frequency chips). When N + 1 is prime,
pi(k) can be selected such that the signals and all their circular shifts achieve maximal
Hamming distance separation.” The window w() allows the frequency chips to be
shaped to adjust their side-lobe characteristics.

The received signal can be modeled as a superposition of the reflected energy
from each of the illuminated scattering centers:

i

N-1 M N -1
r(t) = E E Pi.m 2 Re{ej‘«Pi.rr:.k Pi.k(t — T’_’m)e_jz'“fr('—'ri,m)}
i=0m=1 k=0
The summation over i represents the superposition of the returns from different
transmitter beams, and the summation over m represents the superposition of the
returns from the M, scattering centers within the ith beam. p, ,, is a positive number
representing the strength of the return from the mth scattering center in the ith
transmitter beam: it is determined by the scattering cross section and the distance
of the target. 7; ,, 1s the propagation delay for the combined forward and return paths
to and from the scattering center. ¢; ,, x represents a nonuniform phase distortion
on the kth chip of the FSK code introduced by the scattering characteristics of the
target and by the fluctuations in the propagating medium. The possibility of a
Doppler frequency shift is ignored in this model.
From this model, the values of p; ,, and 7, ,, as a function of i and m provide
the desired sonar “image.” For any given time delay, p; ,, can be estimated using a
detector that minimizes the mean square error. Estimation of 1, ,, can be avoided by
simply estimating p; ,, for all resolvable time delays.” Using this approach, the

*The Hamming separation distance is the minimum number of elements that differ between a code
word and any of the circular shifted or unshifted versions of another code word.

*Since the total bandwidth of the transmitted signal is N/T Hz, the resolvable time delay is
approximately T/N seconds.

Sec. 22 Signal Processing Topics Used in Examples 35

discrete-time approximation to the detectors is shown in Figure 2.3. In-phase and
quadrature samples are taken of the received signal after demodulation by the carrier
frequency, f.. Matched filters are used to detect the individual frequency chips. Since
the model allows for an unknown, nonuniform phase distortion between frequency
chips, incoherent summation is used between frequency chips: this incoherent com-
bination is completed in the last box in Figure 2.3. Finally, to avoid a priori
estimation of 1, ,, the output from these detectors is computed at each point in time.

The digitized frequency chips will be w(nT/N)e /"™ for k = 0,...,N — 1.
Thus, the outputs from the frequency-chip matched filters are:

vi[t] = x[e]* (W(_ [7\/7:)61(277/1\/)“)

0
= % 1)x[t ~ n]w(—nf;)ef(z"/m"" (2.1)
N-1 T
= gox[t + n]w(nﬁ>e"'(2“/”)"’” (2.2)

From (2.1), the frequency-chip matched filters can be implemented as a modulated
filter bank.

A well-known implementation of a modulated filter bank is the short-time
Fourier transform (STFT). By defining v,[n] = x[t + n]w(rnT/N), (2.2) can be seen
to be the N-point discrete Fourier transform (DFT) of v,[n]. Thus, the matched
filters can be implemented using a STFT. Formulating the matched filters as a STFT
allows the use of well-known, computationally efficient implementations of the
STFT. The most obvious of these is the FFT: an N-point FFT of v,(n] can be
separately computed at each time sample ¢. This approach requires O(N log N)
computations per time sample ¢ and allows temporally sparse computation of y,[¢]
without any increase in complexity per output point.

A third implementation of the frequency-chip matched filters can be derived
by again considering (2.2). Defining

n] = x[t+n] 0=n<N
o 0 otherwise

Recovery N -
r(t)— of base-band | x[n] wl-n] Cylnl Solnl—
I & Q samples > R .
| wl-nle/ 55") S,[n}
N—-1

S‘,‘[n] = E lépi(k)[n + kNT|

L] w[—n]ej—zNE(N‘”" éN_l["] S‘N—l[”]]'_>

Figure 2.3 The discrete-time approximation to the optimal detectors for N FSK-
coded sonar signal beams.

36 Computer-Aided Algorithm Design and Rearrangement Chap. 2

with X [k] and W[k] as the N-point DFT’s of x[n] and w(nT/IN), y:[f] =
(I/N)X[k]® W[k] where @ is an N-point circular convolution. This approach im-
poses the shaping provided by w(z) through frequency-domain convolution. The
advantage of shaping x,[n] after computing the DFT is that the Goertzel algorithm

can then be used. In particular
X, 4 1[k] = "MK X [k] + x[t + N] — x[t])

Using this recursive approach to find X,[k] requires O(N) computations per time
sample ¢. The total computational cost of computing Y,[¢] depends on the form of
W[k]: if W[k] has only a few nonzero samples the additional computational cost
1mp0seu Uy buaplug may be much lower than would be required 0y a gcuclal
convolution of two sequences. A disadvantage of this approach is a problem with
stability: the recursive computation depends on pole/zero cancellation on the z-
domain unit circle.

As will be described in section 2.4, ADE generated a fourth, innovative
implementation of the frequency-chip matched filters [1]. This new approach, which
will be referred to as the pruned FFT, could not be found in either modulated filter
bank or short-time Fourier transform literature. Like the recursive computation of
the STFT, the pruned FFT imposes the shaping provided by w(¢) through frequency-
domain convolution and, like the recursive STFT, only O(N) computations per time
sample ¢ are required to compute X,[k]. The pruned FFT has the advantage over the
recursive STFT of unconditional stability.

2.3 CAPABILITIES AND REQUIREMENTS FOR AN INTEGRATED

SIGNAL PROCESSING ENVIRONMENT

Section 2.1 asserted that a signal processing workstation that provides an integrated
environment for numerical processmg, angornhm dcfuuuuu and algux ithm mamp-
ulation could potentially simplify the design of new signal processing algorithms, as
well as improve the reliability of the design process. Supporting both algorithm
definition and numeric processing allows the engineer to test the behavior of al-
gorithms as soon as they are defined. Similarly, supporting both algorithm definition
and property/transform analysis would allow analytical tools to be easily applied by
computer, such as studying the z-domain representations of linear time-invariant
systems. By including algorithm rearrangement in the workstation’s capabilities, a
high-level signal processing “compiler”” can be used to apply well-known global
transformations to an initial descrlptxon of an algorlthm. One example of this
high-level compilation would be the transformation from the noninteger sampling
rate conversion shown in Figure 2.1(a) to one of the polyphase structures shown in
Figures 2.1(b) and (c). Another possible advantage to a high-level signal processing

(‘nmnﬂpr 1s the derivation of new, nnmnnfahnnallw efficient |mnlpmpnfqhnnc far the
y AAilViwiL llllylvlll\llllutlu A\/L Lllww

given signal processing operatxon. Two examples of new, innovative implementa-
tions found by high-level signal processing compilers will be discussed later in this
chapter.

Sec. 23 Capabilities and Requirements 37

Given that our goal is to expedite signal processing algorithm design, some
effort should be made to determine what capabilities are desired and what con-
straints are imposed by these desired capabilities. A general statement of the desired
capabilities has already been made: to support numeric processing of signals, al-
gorithm definition, signal and system property analysis, and algorithmic rearrange-
ment, all in a consistent, well-integrated manner. Each of these requirements in turn
imposes constraints on the signal representation that is chosen. Some of these
constraints have been pointed out by Kopec in Chapter 1. In this section, we review
the requirements described by Kopec and we introduce other requirements, to allow
for algorithm manipulation and analysis.

2.3.1 Support for Numerical Signal Processing

Providing consistent, well-formulated support for numeric processing of signals and
for algorithm definition imposes some basic constraints on the representation of
signals, some of which were discussed in Chapter 1. The signal representation should
be explicit and unique, with uniform external behavior; it should distinguish between
the domain and the nonzero support of the signal; and it should be externally
immutable. The same signal representation should be used for both numerical
processing and for the signal analysis and manipulation operations. In more detail:

e Explicit, unique signal identity: In signal processing, signals are not just an
ordered collection of sample values, but instead have a unique identity and inherent
properties of their own [Chapter 1]. Many of their properties, such as nonzero
support, domain, and symmetry, are closely tied to the sample values, but others,
like the algorithm that generated the signal or its computational cost, cannot be
derived from the sample values. Therefore, an explicit signal representation, distinct
from a simple ordered set of sample values, is necessary. :

¢ Uniform external interface to signals: To simplify the interface of signals and
systems, signal representations should all have the same external behavior, indepen-
dent of the internal computational method used to generate the sample values of the
signal [2, 4]. For example, the retrieval of a sample value from a point operator, such
as a multiplication block, should externally appear the same as the retrieval of an
array operator, such as an FFT block, and the same as the retrieval from a state-
machine operator, such as an IIR filter.

¢ Distinct signal domain and nonzero support: The signal representation
should distinguish between the domain and the nonzero support of the signal [2, 4].
The domain of a signal determines where the signal is defined: discrete-time
sequences are defined on all integer time indices and undefined elsewhere; discrete-
time Fourier transform signals are defined on all real frequency indices; and z-trans-
form signals are defined on the annulus of complex indices inside its region of
convergence and undefined elsewhere. Any sample value within the defined domain
of the signal should be accessible. Accessing a signal inside its domain but outside

its nonzero support should return the sample value of the signal at that point, namely
zero.

38 Computer-Aided Algorithm Design and Rearrangement Chap. 2

e Immutable signal representation: An additional constraint on a signal repre-
sentation for numerical processing is that signals should be immutable, i.e., there
is no operation that can change the properties of a signal once it is defined. Math-
ematically, signals are immutable objects: their identity and their properties are
fixed and unchanging. For example, the sample values, symmetry, and nonzero
support of the 256:point Hanning window are completely defined and immutable.
Using this sequence as input to a system does not alter the sequence, but instead
produces a new sequence. As pointed out in Chapter 1, this immutability in signals
also simplifies and clarifies the signal processing algorithms that use them: im-
mutability makes signals referentially transparent.

2.3.2 Support for Algorithm Definition

Supporting algorithm definition constrains the internal representation of signals and
systems, just as the support of numerical processing of signals constrains the external
behavior of signals. Besides the constraints already discussed, algorithm definition
is simplified if there are multiple computational models that are supported by the
signal processing environment. Four computational methods that are widely used in

signal processing are point operations, array operations, state-machine models, and
composition operations.

e Array operators, such as FFTs, compute multiple sample values simulta-
neously.

e State-machine models generate sample values sequentially using an internal

state vector: an IIR filter, for example, could be easily implemented using a
state-machine model.

¢ Point operations, in contrast to array operators and state-machine models,
generate one sample value at a time in any random order. Two examples of
point operations are addition or multiplication.

® Composition operations are implicitly defined through the cascade or “compo-

sition”’ of other, previously defined systems. An example would be the defini-
tion of a cosine sequence as the sum of two complex exponentials.

Supporting all four of these computational methods simplifies the programmer’s
task, since algorithm definitions do not have to be forced into a computational form
that is ill-suited for the operation at hand. Providing multiple computational meth-
ods while maintaining a uniform external interface decouples the internal and
external characteristics of the signal [2, 4]. Thus, the user of a signal need not be
concerned with the computational method that the programmer of the signal chose.

2.3.3 Support for Signal Property and Transform Analysis

The premise of this chapter is that a well-integrated signal processing design environ-
ment should support property and transform analysis, as well as the more standard
algorithm definition and numeric processing steps. Property analysis allows specific

Sec. 2.3 Capabilities and Requirements 39

questions about the characteristics of a signal or system (e.g., symmetry or linearity)
to be answered. Transform analysis uses an alternate representation of a signal
or system (e.g., a z-domain representation) to emphasize some aspect of the signal
or system that is not apparent in the time-domain representation. The automation
of property and transform analysis would allow these analytical tools to be easily and
reliably applied by computer. Although property and transform analysis could
theoretically be completed using “first principles,” this approach to property and
transform analysis would be slow and unwieldy at best. Instead, the approach that
is envisioned relies on explicitly including information in the signal and system
definitions about properties and transforms. This approach to the automation of
property and transform analysis would require:

e Explicit descriptions of signal properties: For example, the definition of
cosine sequences would explicitly include the fact that these sequences are real and
symmetric. With this type of information, the environment could provide the values
of signal properties, such as those listed in Table 2.1. Furthermore, by providing the
user with the appropriate tools, additional properties (e.g., cyclostationarity) could
be added by simply adding this extra information to the signal definitions.

e Explicit descriptions of the effects of systems on signal properties: For exam-
ple, by indicating the effect of a shift operator on the symmetry of a sequence (i.e.,
that it shifts the point of symmetry) and on the sample value type of a sequence (i.e.,
no effect), the symmetry and sample value type of a shifted cosine signal could be
determined by the signal processing environment. This information about a system
would describe its effect on the signal properties of its inputs.

e Explicit identification of signal transforms: For example, the definition of
rectangular-window sequences would include the fact that their discrete-time
Fourier transform is an aliased sinc signal. With this information, the environment
could provide closed-form expressions for signal transforms, such as discrete-time
Fourier transforms (DTFTs) and z-transforms.

o Explicit descriptions of the effects of systems in the signal transform space:
For example, by indicating the effect of a shift operator on the Fourier-domain
representation of its input (i.e., modulation by a complex exponential signal), the
Fourier-domain representation of a shifted rectangular window could be determined
by the signal processing environment. This information about a system would
describe its effects on the DTFT and z-domain representations of its inputs.

TABLE 2.1 SOME USEFUL SIGNAL AND SYSTEM PROPERTIES

INVERTIBLE-P, INVERSE-SYSTEM: Whether or not the system is invertible and if so, its
inverse.

SAMPLES-COMPUTABLE-P, COMPUTABLE-P: The computability of individual sample values
of the signal and of all the sample values of the signal.

SAMPLE-TYPE: The data type of the sample values of the signal.

RANGE: The range of the sample values of the signal.

NON-ZERO-SUPPORT: The indices on which the sample values of the signal may be nonzero.

PERIODICITY: The repetition period of the signal.

SYMMETRY: The description of the symmetry characteristics of the signal.

AN n
_v s

2.3.4 Automation of Algerithm Rearrangement

One of the most desirable capabilities for a signal processing environment is the
automation of algorithm rearrangement. This would in effect provide the engineer
with a high-level signal processing “‘compiler.” This compiler could be used both to

apply well-known global transformations to an algorithm and to derive customized,
(\nmhntg[;gnallv efficient implementations for unusual aleorithms. High-level com-

1 LIAP/AVARIVIILAR LIV RES s OV AALIAIALS. L AagaaTIV VWA WUARL

pilation of algorithms requires both the ability to enumerate mathematlcally equiv-
alent implementations and the ability to compare these alternate implementations
to determine their relative merit, based on computational efficiency [1, 2].

"n ~S
WEE Wi ive

implementations

Since high-level compilation of an algorithm relies on enumeration of mathe-
matically equivalent implementations the distinction between mathematical equiv-

ATttt N Arvrzizrnlaman 10 tevienebnnt PPy

Mathematical equivalence, or equality, between signals implies that the domain and
all of the sample values of the signals are equal, even though the signals may have
used different computations to arrive at those sample values. An example of math-
ematical equivalence is provided by the 256-point DFT of the 256-point Hanning
window* and the sequence $8[k] — B[k = 1] — ¥[k — 255]. Assuming infinite com-
putational precision, the domain and the sample values of the sequences are equal,

even though they were arrived at through very different paths. Computational
pqruynlpnce between signals implies that all the annl cnrnnprtmca e identical. This

pravS i Liil 32 A LA v“ Liilivasl

includes the sequence of computations used to arrive at the 51gna1 sample values (i.e.,
the generating system or algorithm). Thus, the only way to get to computationally
equivalent signals is to use the same input signals into the same sequence of oper-
ations: the output of an FFT operator applied to a discrete-time impulse 1s compu-

tationally eguivalent only to the outnut from the same FFT gnerator annlied to an
‘ullvllull Hul'ul\l‘l‘ U‘l‘] LU Liliw Vutyu‘- A1AN\/1338 LllwWw ODCGAlildWw 4 13 a Ut}\/l ALl u}]y 1w LW Al

1dent1cal discrete-time impulse. Computational equivalence may seem like a tautol-
ogy, involving statements like “‘sinx = sinx,” but it is an equivalence that is often
lost in computer programming languages. For example, in most programming lan-
guages, the mathematical equality of two copies of the output from an FFT operator

wnanld ha Aiff rnlt ¢ Aotarens roaAmiring a camnl hyu_cnmnla ramnmaricnn nftha twn

wOuiG O0C GiiiCuit 10 acier lllillC ICLiLlll nig a Balllle'U)’ DalllPlC Luiiipai ibUll Ul Lll\./ LYWy

output sequences, and computational equality would not be determinable based on
these output samples.

In algorithm rearrangement, mathematlcal equivalence must be maintained

*An M-point Hanning window, w[n], is {7]

1
win] = ! =cos(mn/M) 0=n<M

l

ONI»—*\
N

otherwise

Sec. 2.3 Capabilities and Requirements 41

mathematically equivalent (but computationally distinct) signals requires:

¢ Explicit identification of equivalent signais: For example, by noting the
mathematical equivalence between the Hanning window sequence and a raised,
windowed cosine sequence, a list of two mathematically equivalent signals could be
collected.

® Recursive identification of equivalent signals and identification and substitu-

tion of equivalent subexpressions: This requirement is most easily explained by
example. Using the previous example of the Hanning window, assume that another
mathematical equivalence was noted between the cosine sequence (cos wn) and the
sum of the conjugate pair of complex exponentials ((¢/*” + e 7")/2). The environ-
ment must be able to put these two pieces of information together and increase the
list from the two equivalent sequences (the Hanning window and the raised, win-
dowed cosine) to three (the Hanning window; the raised, windowed cosine; and the
raised, windowed sum of the conjugate pair of complex exponentials). This requires
that the environment search recursively for equivalent signals using newly discovered
signals (in this case, the raised, windowed cosine sequence) and that the environment
search for signals that are equivalent to the subexpressions of the complete signal
description (in this case, the cosine sequence is a subexpression of the raised,
windowed cosine). This search strategy is described in detail in sections 2.5 and 2.6.
To provide these lists of mathematically equivalent systems requires:

o Explicit identification of equivalent output signals: For algorithm manipula-
tion, lists of mathematically equivalent systems must be derived from information
included in the system definitions. Often, the most straightforward way to provide
this information is to describe the signals that are mathematically equivalent to the
output signal when the system has been applied to some general or partially specified
input. Without this shift in focus, most algorithmic transformations are difficult to
specify, since the input signals and parameters of the system are unbound until the
system is applied. For example, the description of the Goertzel algorithm as being
mathematically equivalent to one channel from the rectangularly windowed STFT
is not possible without being able to refer to the input signal, x[n]. Thus, this
approach to finding equivalent algorithms places two requirements on the environ-
ment: that the system definitions include information about signals that are equiv-
alent to their output signal and, as discussed next, that general or partially specified
signals can be represented and manipulated.

@ Representation of general or partially specified signals: As mentioned previ-
ously, one straightforward method of finding mathematically equivalent implemen-
tations of an algorithm is to use general or partially specified signals as the inputs
to the algorithm and to then find signals that are mathematically equivalent to the
output signal from the algorithm: the equivalent algorithms are then given by the
composition of systems used to generate the equivalent output signals. This ap-
proach to algorithm manipulation is highly reminiscent of the algebraic manipulation
that engineers commonly do on signal processing equations. In algebraic manipula-

42 Computer-Aided Algorithm Design and Rearrangement Chap. 2

tion of signal processing expressions, the inputs are represented by an algebraic
variable, such as x[n], and the output signal generated by processing this input is then
manipulated. For example, the derivation of the Goertzel algorithm from the direct
formulation of the STFT would start with the input to the STFT being represented
by x[n]. The output signal from the DFT would then be

N-1

yi[t] = 2 x[t + n]e /@M

n=90
The Goertzel algorithm could then be derived by manipulating y,[¢] without making
any assumptions about the sample values or properties of x[n]:

N-1
Wi+ 1= 2 A+ 1+ e -
n=0
N
= @ 30 X[t + m]e iemMkn @4
m=1
N-1
= ICTVE S)t + meTCTNkm 4 GCTNK L[4 N — N x[] (2.5)
m =0
= Oy, [t + 1] + x[t + N] = x[1]) (2:6)

The representation of a general or partially specified signal requires a mechanism

for representing signals whose sample values and properties are not completely
known.

Comparison of Computational Cest

To provide a high-level compiler of signal processing algorithms, the environ-
ment must include some method for ranking the mathematically equivalent imple-
mentations of a given algorithm and selecting the best one. The metric that is
generally used by compilers is the computational cost of the alternative algorithms.
Thus, the signal processing environment must be able to determine the relative costs
of equivalent algorithms, in order to select the most computationally efficient. Myers
(2] and Covell [1] discuss computational cost metrics in more detail.

2.3.5 Summary of Requirements for an integrated
Signal Processing Environment

An integrated signal processing environment should support the numeric processing
of signals, the definition of new signal processing algorithms, the analysis of the
properties of signals and systems, and the rearrangement or ‘“‘compilation” of signal
processing algorithms. To provide support for these capabilities, certain constraints
have been placed on the signal processing environment.

e It must provide an explicit representation for signals.
® The sample values of signals must be accessible at random from anywhere in

Sec. 2.3 Capabilities and Requirements 43

the domain of the signal: this requirement implies both that the external access
of the sample values is unaffected by the internal computational model and that
sample values must be accessible outside the nonzero support of signals.

e The signal must be immutable in its external characteristics: its property values
and sample values must be unchanging from the time they are first referenced.

® Analyses of signal and system properties and transforms must be provided by
the environment, using information included in the definitions of signal and
system classes.

® Finally, algorithm rearrangement and cost analysis must also be provided

by the computer, to allow for high-level compilation of signal processing
algorithms.

Figure 2.4 reviews the capabilities of some currently available signal processing
environments. This figure does not attempt to exhaustively list the currently avail-
able software. Instead an attempt is made to examine the range of signal processing
environments currently in use. The first set of signal processing environments
[17, 18] listed in Figure 2.4 were developed to only support the definition and
numerical application of completely specified, numeric algorithms. As mentioned
in section 2.1 and described in Chapter 1, SRL is the result of research by Kopec
into data abstractions both to reflect the basic characteristics of signals and to support
numeric manipulations. Kopec [3] advocated the immutability of signals and the
explicit availability of their nonzero supports as being essential for simplifying and
clarifying signal processing programs. nthPOWER (Signal Technology, Inc.) is a
commercial version of SRL and one of its descendants, ISPUD [8]. SPLICE [2, 4]
was also mentioned in section 2.1. In SPLICE, as in SRL, sequences are immutable
data objects with an explicit nonzero support. Unlike SRL, sample values outside
the nonzero support can be accessed by the same operations that access the sample
values inside the nonzero support. Sequences, defined by the generating system and
its inputs, behave uniformly independent of the signal processing model used to
define the system: for example, sample values of a sequence defined using a state-
machine model can be fetched at any index without explicitly determining the

MATLAB, SRL,ISPUD, E-SPLICE,
ILS, etc. nthPOWER SPLICE ADE

AN

Explicit signal representation

Unique signal representation
Immutable signals

Explicit signal properties

Distinct domain and nonzero support

Fulfills requirement *‘Abstract’’ signals

N

Partially fulfills requirement Equivalent implementations

Figure 2.4 The capabilities of some currently available signal processing environ-
ments.

44 Computer-Aided Algorithm Design and Rearrangement Chap. 2

previous states. E-SPLICE [2] and its descendent, ADE [1], were designed to
support not only numerical processing and algorithm definition but also automated
property analysis and algorithm rearrangement. Hence, these are only environments
that provide signal representations which meet most of the constraints developed in
this section. In particular, the signal representations are unique and immutable with
a distinct domain and nonzero support and with explicit signal properties, such as
symmetry and computational cost. Furthermore, these environments automate the
analysis of properties and signal transforms and can represent and manipulate
“general” signals. Finally, both E-SPLICE and ADE provide a tool that approaches
the desired high-level signal processing compiler discussed earlier: both environ-
ments will provide an enumeration of alternate implementations of an algorithm,
partially ranked on the basis of the computational cost vectors.

The remainder of this chapter focuses on the capabilities and characteristics
of ADE. Section 2.4 includes an example of the use of ADE to define and analyze
the properties of the FSK-code detector, shown in Figure 2.3. The remaining
sections of the chapter explore the process through which alternate implementations
of an algorithm are found by ADE. Some results from using ADE to find alternate
implementations are discussed in section 2.4.

2.4 ADE: A FEASIBILITY PROOF FOR AN INTEGRATED SIGNAL
PROCESSING ENVIRONMENT

The previous section pointed out some of the requirements for a complete and
well-integrated signal processing environment. As shown in Figure 2.4, ADE at-
tempts to meet each of these requirements. Therefore, ADE will be used within this
chapter to illustrate the potential benefits of a well-integrated signal processing
environment. The illustration of these potential benefits is simplified by considering
a specific signal processing design problem: the problem that has been chosen for
this illustration is the design of a detector for sonar FSK-code reflections.

This section provides a brief description of ADE. It is guided by a discussion

of two short sessions in ADE, one illustrating the programming of the environment
and the other, its interactive use.

2.4.1 An Overview of ADE

ADE provides an integrated environment for numerical processing, algorithm defi-
nition, signal and system property analysis, and algorithm rearrangement. The
underlying signal representation is an object-oriented signal representation, satisfy-
ing all the desirable properties discussed in section 2.3. Information about signal
processing, used in property analysis and in algorithm rearrangement, is represented

Sec.24 ADE: A Feasibility Proof 45

in a rule-based system. Although the capacity for forward chaining’ is included in
ADE, the majority of the environments resources are devoted to backward chaining
from specific inquiries. Tools are provided within ADE for extending this rule base,
both through the introduction of new signal and system classes and through the
introduction of new properties and signal transforms.

ADE is a descendant of the SPLICE and E-SPLICE environments. ADE
inherits its basic approach to signal definition and representation from SPLICE. The
influences of E-SPLICE and to a lesser extent PDA [9] are reflected in the structure
of some parts of the rule base. In particular, as in E-SPLICE, ADE uses backward-
chaining rules to describe the properties of signals. ADE, like E-SPLICE, supports
multilevel matching within the patterns of these rules. The approach used in ADE
for matching forward-chaining rules was introduced by Dove [9]. ADE makes use
of a subset of QM [10] and a limited number of functions from MACSYMA [11].
QM is the product of research into qualitative mathematics. It represents, manipu-
lates, and describes piecewise-continuous functions. A subset of QM is used to
record and propagate constraints on symbolic numbers. ADE includes an extension
to QM to support limited reasoning about symbolic integers as well as the continu-
ously variable numbers. ADE also makes limited use of MACSYMA to simplify and
factor the polynomials used in the characterization of z-transform signals. ADE is
written in Symbolics Common Lisp [12]. This choice of language provides both the
flexibility of a LISP dialect and support for object-oriented programming.

The remainder of this section provides examples of the use of ADE in the
context of the FSK-code problem introduced earlier. Examples are given of pro-

gramming (algorithm definition), property analysis, and algorithm rearrangement in
ADE.

2.4.2 Exampies of Algorithm Definition
and Manipulation in ADE

In the sonar imaging problem, an important problem is to find a way to achieve good
spatial resolution without requiring a large, costly array and without missing tran-
sients through the use of a swept beam. The first step in solving this problem is to
select a method by which it will be solved. Although this selection draws heavily on
signal processing experience and creativity, the selection process can be accelerated
by providing a support environment in which the signal and system representations
closely match the internal models used by the system designer. These representa-
tions must change according to the problem at hand, since different problems give

*Forward chaining in a blackboard/rule-based system is the use of current information to deter-
mine additional information, without requiring an inquiry to explicitly trigger that line of reasoning. In
general, this approach triggers any rule whose preconditions are satisfied based on the current state of
the blackboard. This contrasts with backward chaining, which starts from a question and then, based on
the preconditions of rules that could answer that question, asks additional questions until a question is
asked that can be answered.

46 Computer-Aided Algorithm Design and Rearrangement Chap. 2

rise to different signal models. To provide this range of representations, ADE allows

the system designer to introduce his own signal and system definitions. For examplé:
in the FSK-code detector shown in Figure 2.3, the incoherent combination of the
matched filter outputs is modeled as a single processing block which follows, but is

separate from, the matched filtering itself. To support this model of the detector,
anew system class, INCOHERENT-COMBINATION, is defined in anre 2.5. The

defmmon relies on the composition of other, prev10usly defined 51gnal processing
systems to provide the output signals with their observable characteristics: lines 8-12
of Figure 2.5 describe this composition.

To simplify the programming task, signal and system definitions closely mimic

the notational conventions used in sienal processine. As illustrated h\l lines 1-4 of

LIUTAUIVIIAL VLIV UIIHIVIIS WOV Ll olglial ylvvuoonxlé 4 2 1St Gliea i11iwg 4

Figure 2.5, signal and system definitions form new ‘‘classes” of 51gnals and systems.
Hierarchies of classes are used to make similarities explicit and to reduce the amount
of coding required. Signals are formed by one of two paths: either as independent
entities that are inherently defined, like an impulse or a complex-exponential se-
quence, or as the output from a system that has been applied to some inputs. Some
of the 43 inherent signal classes and the 169 system classes currently defined in ADE
are listed in Table 2.2.

Once all the appropriate signal and system classes have been defined, the
process of creating and analyzing the signals and systems involved in the design
problem is simplified. Figure 2.6 illustrates the design sequence. Line I-1 of Fig-
ure 2.6 shows the definition of a partially specified discrete-time signal, x[n], which
1s periodic and complex valued with both its real and imaginary parts in the range
from —1 to +1. This description is only a partial description of the input since there
are a large number of discrete-time sequences that satisfy all parts of this description.
The resulting object, printed on line O-1, is an ‘“abstract” signal.

The FSK-code detector is compactly described in lines I-2 and /-3 of Figure 2.6.
As can be seen by comparing these lines with the model for the detector shown in
Figure 2.3, the computer representation and the designer’s representation are
closely matched. As is shown in the remainder of this figure, ADE provides infor-
mation about the properties of the output signals from this detector and about
alternate implementations of the matched filters used in the detector.

In more detail, lines I-2 and [-3 of Figure 2.6 create an incoherent detector for
the set of 16 FSK codes, using a 16-point rectangular window to shape each frequency
chip. The input to this detector is x[n]. The output from the modulated filter bank
is a two-dimensional signal, YC. YC is used as the input to the incoherent combiner
and the final output signal is Y. Lines /-4 and /-5 of Figure 2.6 request the range and
periodicity of the output from the detector, Y. The range and periodicity of a signal
are among the properties that can be explicitly requested. Signal properties, such
as symmetry, sample type, and nonzero support, are explicitly available character-
istics of every signal. Similarly, system properties, such as equivalent systems and
invertibility, are explicitly available characteristics of every system. ADE determines
the values of signal and system properties by using the property information explic-

(1 + N)pow (I — (1 + ¥).(1 + 1) = (¥)'d ‘uonduny uoneinwiad ay1 uaym ased [eD
-ads ayi ut ¢-z 2814 jo washs S Yl J0J ISUIGWIOD JUIIIYOIUT UB sauyyap d[dwex? sy

v jo Surwuresrdoid sys jJo sidwexa uy ¢°g @inbig

AA: + Ny pow (1 - (t = ¥ (] + :,PD&ZH
JANLINOVIN)
((N ¥ &) 14IHS) 40-LNd.LNO) = (¥)'d 219ym
((1 = N)Yd(0)'d AAV-IOININOIS) = 'S 219ym

(' 7~§ 0 SAONANOIS-A0-INVH)
:suonjeiado

jo uomsodwod ayy o1 _ seype,, sjeudis indino ay;
SIA[ISWAY] O] , Sk, SWIISAS ay)

SISSBO 9533 JO SSe[oqns e
indut ue se (JNdNI) 2ouanbas -z e 1dasoe
Ia1oweled walshs e se () 123a1ur ue 1dodoe

4!
It
01
6
8

— NN <t O~

(CCCCCCUN + DA + DA + 1y =)AOW) LNANI 9ONINOAS-HOLAA)

FANLINOVIN-ONINOHS)
((N Y «) LdIHS-IONINOIS)40-1LNdLNO)
N 0 3 Aav-3ONIN0IS YIAO-dVIN)
N 0 I STIONANOIS-HO-INVH YIAO-dVIN)

,Uoneuiquiod juaiayoout a4l wodj muuc®:U®m usauzo ur_fv
(J138
:«Hszm utl mUUCOBGOm oyl ‘HO wco_muo> UuCEw mo ._oc_DEOo HCEOLOU:_ :m:v
(WALSAS-AZ WALSAS-SNOINIOOWOH WALSAS-LNVIYVANI-LIIHS)
(IONIANOIS-ATD LNINID
(MIOTINIDN NOILLYNIGNOD-INTIFHOINI)
SVITV-SSVTIO-WALSAS-IANIIIA)

-

cl
11
01
6
8

L
9
S
13
3
[4
I

uonduosaqg

2poD AV

47

JLVONINOD-XdTdNOD

WY OASNVIAL-YIEINOI-I1TYDSIA
WHOASNVUL-ISYTANI
WAOASNVIL-Z-ISHYIANI
WIOASNVILZ
INHOASNVIL-YIINOI-dSYTANI
WHOASNY I L-JARNO0A
[dT-NI-SSVITV-TVNDIS

VAL TA-YI-TVSNVOLLNY

A LTI A TVSVO

JdLT4-914

WALSAS-ddAOdVIN
JLA-FNLL-LTHOHS
MOANIM-FINIL-LIOHS
SAONANOAS-10-YNVE-d1V.LOd
SADONINOFS-40-JNVH

FAVATIALINI
ATdINVSNMOA
FTdNVSdN
XAANI-ZTVOS
ANTVA-4LOTOSY
ISVHd-LNdNI
JANLINOVIA
IAVdA-OVINI
14vd-1vad
ddIAId
TvO0ddIOad
3IVOS

JATHS
FATOANOD
ATdILINN
LOVILENS
aav

FAAVS-dVTAIAO-IATOANOD-ADNANOHS

FATOANOD- UV INIDUID-FONDNOIS
ASAYTATI-YVINDIAID-HONINOIS
JATHS-¥VTINDAID-FONINOIS
WHLSAS-AVANIT-QIZI'TVIINTD
WALSAS-YVINIT

WALSAS-SNOANTDOWOH-AAZI'TVIIANTD

IWALSAS-SNOINIDONOH
WALSAS-JALLIAAY
IWALSASFALLVIDOSSY
IWALSAS-SSHTAYONWAN

WHLSAS- INVIIVANI-LATHS-QAZITVEINTD

WALSAS-LNVIdVANI-LJIHS
WALSAS-NIVINOA-Z
WHLSAS-NIVINOd-441dNOd
WHLSAS-dC
WHLSAS-IWIL-FLAEDSIA

(5aSSB[D [BOIYOIRIANY G9T) SISSBY WIISAS

FONINOIS-AI-ATd VLS
AONANOIS-FIITVSNVILLNY
AONINOISHII-TVSAVD
HAONANOIS-AII

FONINOFS-HIA

FONINOIS-ANIS
AONINOIS-INISOD

ONIS
MOANIM-YVTNONVLIOTYTVSOAVD
AVIINANOIXd-XdTdWOO

ADONANOAS-MOANIM-ONININVH-TVSNVO

AONINOAS-dILS-LINN
TVILLNINOXI- TVIINGD

- dSTNdINI
HONINOIS-ddM0d
LINVISNOD

L1Z-TVNOILVY
AONIN03S-dT
TVNDIS-NIVINOQ-Z
TVNDIS-NIVINOJ-3ANOod
FONANOIS-HWIL-ALAYDSIA

(sassepd [edIYdIRIANY) Sasse[d [Buls JudIdyu]

3AV NI QINIHIA AILNTRIND SISSVYIO WILSAS ANV TYNOIS 3HL 40 INOS T°C 318VL

48

4dv

JO 3sn 9y} JO UOISSNISIP PI[ie1ap 210w B 10} (6861) [12A0D 29§ 'sindino ay1 aweudisop ,, &,
U901 Y1 Yum saull-O Y1 pue sindui s 19sn ay; 91euBIsap . iV, U901 24l YIim saull-] YL,

J(IV Ul Uoissas aanoesdut ue jo aldwes v @'z ainbByd

suonejuswadw j g4 paunud Ajjented ‘aaylo pue
L'z 21n81q ul umoys uonejuswafdwi | g3 paunid
uoneiuawaduwn J g4 dIsse[o 3yl

sapnjoul suoneiuswadwit JuadYI2 Jo 1SI| 2Y)
,amdwod 01 sAem 1UIIDIJI Y] 3Ie Jeym

sajdures g¢z st & Jo Ayoipourad ayy

& Jo Anotpourad ays st 1eym

7€ DUB () U23M13Q SINJBA Y1Im [B3I ST X

(A Jo 28uel oyl St 1eyMm

I3UIqUIod 1U212Yooul 3yl woij 1ndino ayy

ndur ay1 se DA Yim

J2UIqod 1uaIayodut ay; jo ndino ayy ‘§ 918310
yueq 121} paie[npow 3y} woij indino ay;

jueq 1211 ay3 03 indur ayj se

¥ Yia pue asuodsal asjndun aseq ay) se mopuim
Iepnduedal esneonue jurod-91 v yitm yueq 1231
pale[npour [ouueyd>-9] e jo 1ndino ayj ‘HA 21ead
aouanbas awn-9121081P 1081I1SQE YY)

1 MO]2q pue | — daoqe sanfea ajdwes Areurdeun
pue [ga1 yim pue sajdues 9gz jo A1dipourad e yum
souanbas ounl-21310SIp | J0BIISqE,, UB ‘Y 91B21D

< 90

Adv 91

< $0

dav 61

< ¥0

dav vl

< €0

AV el

< O

-dav ¢l

< 1-0

dav 1l

(" (" aav-3oNINods) mmuzmaowmﬁo-xzz\mv
((((8N M Id 2- &) 0 XTTdWOD) dXdT) 91VOS)
40-1Nd1NO)
Z 0 8N (1OVY.L4NS. aav. (8 3 >) A1) YIAO-dVIN)
91 0 M STONTNOAS-HO-INVE. JTAO-dVIN)) & 9-0
(OA SNOILVINIWTTIWI-LNAIOIAAT) :4AV 91
967 & §-0
(A ALIDIAOIYAd) :3AV §-1
({o 0} {z€ 0} IONVY) & #-O
(A IONVY) :3aV 1
A <¢¢0
((OA (91 NOILVNIGINOD-INTYTHOONI) 10-1NdLNO)
: A O1dS-AdIVvN) :dav €1
DA <€ 70
((x
(91
((91T MOANIM-UVINONVLOTY) ISYTATA)
JINVE-4ALTIE-d3LVINAONW) 40-1NdLNO)
DA O14S-AdINVN) AV <1
X <10
(1 1=} {1 1=} IONVY-ILVIYD) ONVYU:
957 ALIDIAOIYAd: SAILYIIOUIY

ADNANOIS-TNILL-ALTYOSIA. JO-YTIWIN-V)
X OLAS-daNVN) dJav 1-1

uonduosacy

SUOISSAS 2A10BIaIU]

49

50 Computer-Aided Algorithm Design and Rearrangement Chap. 2

itly included within the definitions of signal and system classes or, if this information
is missing, by using the default value for the property. Some of the signal and system
properties that are currently included in ADE were listed in Table 2.1. Tools are also
available within ADE for adding other signal properties that could be useful to the
particular problem under consideration (e.g., stationarity).

Line I-6 of Figure 2.6 requests a list of all the computationally efficient
implementations that can be found for the matched filters, used in the detector.
Computational efficiency is determined in ADE on the basis of memory require-
ments and the required additions, multiplications, and memory references. Line O-6
shows some of the efficient implementations generated by ADE. The given form of
the modulated filter bank is not included in this list of implementations, since there
are other implementations that are more computationally efficient. Instead, the list
includes the classic FFT-based structure, described in section 2.2, and a variety of
“pruned” FFT-based structures: one of the pruned FFT-based structures is shown
in Figure 2.7.¢ The pruned FFT implementations have the same underlying structure
as the classic FFT implementation. The difference lies in the number of butterflies
that are computed at each stage. For example, the pruned FFT structure shown in
Figure 2.7 has only one butterfly in the first stage, two in the second, four in the third,
eight in the fourth, and so on, while the classic FFT structure has N/2 butterflies in
each stage. As can be seen from the comparison of costs shown in Figure 2.7, a
trade-off exists between the minimum number of memory locations, achieved by the
classic FFT structure, and the minimum number of operation counts, achieved by
the pruned FFT structure.’

Since the selection of the frequency-chip window affects both the range reso-
lution and the signal-to-signal rejection of the sonar system, another two frequency-
chip windows were considered to explore the trade-offs between resolution and
signal-to-signal rejection: the 16-point Hanning window and the 32-point Hanning
window with overlapping frequency chips within the FSK code.® Figure 2.8 shows
the pruned FFT structure generated by ADE for the 16-point Hanning window. The
resulting structure consists of the pruned FFT structure of Figure 2.7 followed by
frequency-domain convolution. Figure 2.9(a) shows the pruned FFT structure gen-

®Figure 2.7 shows operations of the form z‘ for positive values of i. These operations are (anti-
causal) sequence advance operations and arise from the use of the anticausal window within the modu-
lated filter bank (see line /-2 of Figure 2.6). The use of the anticausal window within the modulated filter
bank is the result of using a causal window for the frequency chips in the FSK codes [see (2.1)].

" The memory counts do not include the registers necessary for storing the intermediate sequence
values. If these additional memory locations were included in the cost structures, the amount of memory

for the classic FFT structure using the method given by Singleton [13] and the pruned FFT structure would
be identical.

*These requests for efficient implementations of the two Hanning-window modulated filter banks

are not shown in Figure 2.6 since they are not substantially different in form from the request already
shown in that figure.

bank of sequences

g/x [2 2BIS

wiad-91 v 10) yury 1931 PARINPOW 24 JO U

"MOPUIAL 18N UR)DAI

s1509 jeuoneindwods sjewixoiddy

pregl— 2 BIS

g/xg/— 2 9[BIS

zuf— 2 dedS

g/xg/— 2 d[8OS

pjaf— 2 8IS

gruf— 2 QeSS

51500 jeuoneindiuo)

Tief~

2 2[BIS

L_ zjer— 2 dEdS T

onviuawspdun .44 paunad ayl, £z 2inBig
NBol | NT N $T 3 " amonns 144 paunid
N N3O N meo_m\. Sl +9 Ll 2INpPNLIS [[BI2U3D)
N N (N Sl 9¢6¢ Y44 jueq 131y paie|npoN
519151821 sppe sardnnu || s1a1s1821 sppe saridnnuw
yus xapdwo) | x3dwo) yys | xardwop | xapdwon 2IMdnIg
N [esauad 10§ 91 = N 10}

54

52 Computer-Aided Algorithm Design and Rearrangement Chap. 2

Pruned FFT '
—| shown in j’>
Figure 2.7]
2D-shift 2D-window
015 [-o0 o] [0 16]

2D-shift 2D-window
0 -1 [-o0 0] [0 16]

(/1 3ress)

r P R K

2D-shift 2D-window
01 [-o0 o] [0 16]

=

2D-shift 2D-window
0 —15 {-00 o] [0 16}

e 30303
{l
N/

Figure 2.8 Thc pruned FFT implementation of the modulated filter bank for a 16-point
Hanning window.

Pruned FFT
shown in
Figure 2.7
A
Modulated v = »
pruned FFT > -
shown in 2
Figure 2.9 (b) B Z
> f—
5 d A —
£ ;’> T .
5 =
= 3
5] ¥
<

U
-az J l - ouwmzj
4
[91 0] [e0 -]

mopuim-(IZ

{ ol oy
7
{91 0] [e0 eo-]

(a)

Figure 2.9 The prunced FFT implementation of the 16-channel modulated filter bank using
a 32-point Hanning window.

4>

g1egif— 2 IIES i
2]

‘amionas . peunid paienpow 3yl {q)

2 9pess

jxgy [O[BIS
El

grxif-

91/ayy £ 2 91838 I
E

__ pjegf— 2 AEIS T

3

9126/~ 2 MBS /\
2 \’ () L_ af-2 91eds T
or/xL f— 2 9feds \/"
2
=B
gu/zg (-2 UEOmf \,
2
= 7]]
grxgf— @ SBS
K
o1yaf_ @ IS
E
- B B

53

54 Computer-Aided Algorithm Design and Rearrangement Chap. 2

erated by ADE for the overlapping, 32-point Hanning window. The resulting struc-
ture uses two pruned FFTs, one taken from Figure 2.7 and the other illustrated in
Figure 2.9(b), followed by frequency-domain convolution. The modulated pruned
FFT structure of Figure 2.9(b) computes a 16-point pruned FFT, offset by half a
frequency bin. As with the rectangularly windowed design, the implementations that
were found reduced the computational complexity of the matched filter bank to
O(N).

It 1s interesting to note that, with the pruned FFT, the order of the com-
putational complexity is actually reduced as well as the number of computations
themselves. Specifically, the order is reduced from O(N?) for the direct-form imple-
mentation or from O(N log N) for the classic FFT implementation to O(N) for the
pruned FFT implementation. The amount of computation that is required for the
pruned FFT is actually identical to that of the recursive implementation and, as
mentioned earlier, the pruned FFT structure has the advantage of being numerically
stable while the recursive formulation is marginally unstable due to its reliance on
pole/zero cancellation on the unit circle.

Another interesting aside is that the pruned FFT structure has not been found
in the currently published literature. Although other pruned FFT structures have
been published [14, 15], these structures depend on the characteristics of the inputs
as opposed to the characteristics of the desired outputs. Thus, in addition to the
standard implementations, ADE generated a new structure for efficiently computing
the outputs from a modulated filter bank.

ADE generates equivalent implementations of an algorithm by testing and
applying algorithm transformation rules. These rules are included within the defini-
tions of signal and system classes. Detailed derivations of the pruned FFT implemen-
tations of the modulated filter banks are provided in Appendix A. In the derivation
of the pruned FFT implementation of the rectangularly windowed modulated filter
bank, the actual transformation rule, which is crucial, is relatively straightforward.
The crucial transformation rule simply pulls common shifts through a generalized
shift-invariant system. With a generalized shift-invariant system, H{ }, if y(r) =
H{x\(t),...,xy()} then y(t — T) = H{x,(t = T),...,xy(t — T)}. Lines 13-30 of
Figure 2.10 show how the shift-invariant property of the generalized shift-invariant
system is used in ADE to generate an equivalent form. By pulling all the common
shift operations through the butterfly and twiddle stages of the classic FFT structure,
the classic FFT structure collapses into the pruned FFT structure. The derivations
of the pruned FFT implementations of the other two windows are longer and more
involved but, again, rely only on relatively straightforward transformations.

As illustrated with the rule describing the shift-invariant property of the gen-
eralized shift-invariant system, the transformation rules that generate the equivalent
implementations are relatively straightforward. However, as illustrated in sec-
tion 2.3.4, the search process that must be used to discover and combine all the

appropriate transformations is comparatively complex. The remaining sections of
this chapter focus on this search process.

INALSAS-LINVIYVANI-LATHS-AIZITVIINTD ‘ssed waisds ay) 10§ uoniuyap ayl, Qg a4nbyy

sindino
WDISAS JURLIRAULI-IJIYS PIZI[EIdUIF INOQe UONIRWIOUI [BUONIPPY

apisino pajind sem jey; 1yiys a3 Joj aresuadwod

apisino 11ys 1s1y qjnd

'sindut y1ys Jo 151 9y3 01 punoq aq [[im SINJNI-LITHSE
‘slunowe Juys jo 1si| ayl 01 punoq 2q [SYOLOVA-LAIHS
‘swaisAs 1j1ys woyy sindino [e 21e sindui ay;

“9pISINO $1JiYs oyi jo auo {ind
‘payyys 21e sindur ay1 (e J1 iapng wioj juseAnba ue

sindut 31ys jo 1s1] 2yl 01 punoq aq |iim SLNAINI-LAIHS,
"wa1sAs 1ys 9fduis e woll sindino [je a1e sindut oy
“apIsino wasAs 1jiys jnd

‘Klreonuapt paijys are syndur syl qe jt ot uonearjdwis v

ssepd jeudis indino mau e 2)eroudd

sassepoladns ou
sindur 1o sig1owedted Aue jdadoe

= v O >~ C

-0l

(
(((((SLNANI-14IHS SYOLOVA-JAIHS
(((LNdNI-LAIHS
(LATHS-DNINIVINTY LAIHS. A1ddV) 40-1LNd1N0O)
(((LAIHS-NOWWOD 4OLOVA-LAIHS -$. YVOIVIN)
LAIHS-ONINIVINTY)) 1971)
(LNANI-LAIHS O1OVA-LIIHS) VAdIVvT).
AVIIVIAN)
WALSAS 40-1NdLNO. A1ddV)
(LATHS-NOWWOD LAIHS. A1ddV) 40-LNd1NO)
(((SY0LDOVA-L4IHS L1SUId) L4IHS-NOWWO0D)) 1971)
YIMSNV:
{(SLNANI-LAIHS];
([SU0LDOVA-LAIHS) 1STUY
INALSAS-LAIHS YTIWIW-O14103dS) 40-LNdLNON$SLNINIE
1834 (NALSAS-JAIHS LON)DWALSAS, 0-L1d1NO)
10drdo:
LINANI-AALAIHS-ATIVNOANN FNVYN:
WHOA-LNTTVAINOT TVOD)
(((SLNANI-LAIHS WALSAS 40-1LNd1LNO. ATddV)
L4AIHS 40-1LNd1NO) YIMSNV:
({SLNANI-LAIHS)¢ 14IHS: 40-1NdLNO)}ISSLNdNIE
1STU® (NTLSAS-LAIHS LON)DWILSAS: 40-LNdLNO) LOAr4O:
LNdNI-AILAIHS FNVYN:
NOLLVDI4I'TdNIS TVOD)
:Eoum%m H:mtmkw:_-CEm U@N:m._o:wm e EO.G H:Qu:O mr_u:v
() nu
CAIN-u™ [N = u]'xg = [N - uJA&[u]x - [u]'x}y = [u]f s {)
()
«(x WALSAS-INVIRIVANI-L4IHS-AIZITVIINAD)
SSVID-WALSAS-LOVY.LSIV-INIIAQ)

g

0t
6¢
8¢
LT
9C
Y4
v
£
[4¢
1z
0¢
61
81
Ll
91
Sl
14!
¢l
4
11
01

o~

S
v
3
[
1

uonduosag

opod HAV

55

56 Computer-Aided Algorithm Design and Rearrangement Chap. 2

2.5 UNCONSTRAINED DERIVATION AND RANKING
OF EQUIVALENT ALGORITHMS

To simplify the development of efficient algorithms, an integrated signal processing

.) .) .S AR
environment should provide a high-level, signal processing “compiler.” This com-

piler must make use of rules, such as the one shown in Figure 2.10, to explore the
space of alternative implementations. This section and the next describe the struc-

ture of the search space that is explored in finding the equivalent implementations
of an algorithm.

2.5.1 Unconstrained Search for Equivaient Algorithms

The task of finding alternate implementations of a signal processing expression is the
same as finding all the algorithmic transformations that are applicable to the signal
processing expression; to its input/output equivalent expressions; and to the sub-
expressions used by these expressions. For example, to find the equivalent imple-
mentations of the filter bank used in the FSK-code detector, all the applicable
algorithmic transformations for the filter bank should be completed, as should the
transformations on the modulated window sequences and the input sequence. In
addition, once an alternate implementation is generated, all of the algorithmic
transformations that are applicable to this new expression or to one of its subexpres-
sions must also be applied. Thus, equivalent implementations of a signal processing
expression can be obtained in any of a variety of ways: a transformation can be
applied to the original signal processing expression itself; a subexpression of the
original expression can be replaced by an equivalent implementation of the subex-
pression; or either of these approaches can be applied to one of the newly generated
equivalent implementations of the signal processing expression.

To simplify this discussion, a graphical representation of the search process is
presented in Figure 2.11. The problem of finding the equivalent forms of a signal
processing expression, without consideration of its subexpressions, can be repre-
sented graphically as a planar net, as shown in Figure 2.11(a). The nodes of the net
represent the signal processing expression and its equivalent forms. The directed arcs
connecting the nodes within the planar net represent the application of simple
transformation rules. For example, in Figure 2.11(a), the modulated filter bank
(node A-1) is replaced by a short-time Fourier transform (node A-2) using a rule
included in the definition of the system class MODULATED-FILTER-BANK: this
rule 1s shown below the transformation arc.

The new nodes that result from algorithm transformations can themselves be
used as the starting point for other transformations. An example of this recursive
transformation is also shown in Figure 2.11(a): the modulated filter bank is first
replaced by a short-time Fourier transform, which is then expanded into the basic
addition, subtraction, time shifts, and multiplications (node A-3) that make up the
short-time Fourier transform.

Each of the nodes of the planar net can also be viewed as a combination of

Sec. 25 Unconstrained Derivation and Ranking of Equivalent Algorithms 57

subexpressions: the subexpressions are the inputs to the generating system. For
example, as shown in Figure 2.11(b), the four inputs to the BANK-OF-
SEQUENCES system in node A-3 can each be manipulated independently. In
particular, each of these four expressions can be replaced by any of their equivalent
implementations, without changing the input/output mapping of the overall al-
gorithm. Thus, this replacement provides additional equivalent implementation to
the original signal processing expression.

Graphically, requesting the equivalent forms of the inputs to the generating
system of a signal drops the problem down to another set of nets and again tries to

(define-system-class

(modulated-filter-bank window n) (input)

(goal equivalent-form
:name as-stft
:object 7self

:answer (output-of (short-time-ft (reverse window) n)

{define-system-class (short-time-ft window ft-length) (input)

(goal equivalent-form
:name as-bank-of-sequences
:object 7self
: answer (map-over ‘bank-of-sequences k O ft-length
(fetch-sequence self k))

input)) .)
L)
(A-1) = «x (modulated-filter r,[-n] 4)
(A-2) = x —»f (short-time-ft r,(n] 4] —
20 -1 (scale ¢ ~/9) + bl §
E3
2! > (scale ¢ /0 + b~ o
(A3) = x : ” i>
72 - (scale ¢ /0) - £
o
F&4 = (scale e /™2) - ;:’,

ryln] = (rectangular-window 4)

(@

Figure 2.11 A net representation of the search for equivalent forms. This figure shows an
example of a search for equivalent forms. Each node (e.g., A-1 or D-4) represents an expres-
sion. The name for each node consists of a letter (A through E) and a number. The letter
indicates which expressions are equivalent (e.g., D-4 is equivalent to D-5) and the number
indicates the order within the sequence of manipulations (e.g., D-5 is modified to create D-6).

58

Computer-Aided Algorithm Design and Rearrangement

Chap. 2

(scale e ~/9)

H(B-4)+

(scale e~49)

F(C-4)»

saouanbas Jo yueq

(A-3) = .
L (scale e /%) F(D-4)»
! (scale e /72 F(E-4)+
\ i (scale e~/0) ~
(B-4) = .
& | (scale /%)
L1 (scale e~/0)]
C4 = + -
5 | (scale e™/*/2)
\ = (scale e /%)
(D-4) = >< -
/ = (scale e /9 -
N __
Ed) = >< (scale e~/0) > .

— (scale e ~/7/2)

(b)

Figure 2.11 (continued)

Sec. 2.5 Unconstrained Derivation and Ranking of Equivalent Algorithms 59

20
1
2z +]
(B-5 = «x + |
,3 /
20
1 — -j0
b4 —- (scale e /Y)
(C4) = «x >< ' ™~ + b
72 — ~{(scale e7/7/2)
23 /
20 \
Z! —
(D-6) = «x >< +
72 + = (scale —1) /
23
20
| - -jo
z —| (scale e™/Y)
(E-9) = «x e -
2 — +{(scale e=im2) "
23 /
+
2° + HB-S)~ §
1 M o
z + HC-4 S
(A7) = x (scale —1) (= g fl>
2 - L(D.- -
¢ — || (scale e ~/0) + (D6~ §
a - bl (scale e~im2y—= ~ B> &

©
Figure 2.41 (continued)

60 Computer-Aided Algorithm Design and Rearrangement Chap. 2

find connected nodes. In our example, this process generates four new subsearches
for the equivalent forms of the four inputs to the BANK-OF-SEQUENCES system
in node A-3: Nodes B-4, C-4, D-4, and E-4 represent those inputs in Figure 2.11(b).
The subsearches must also find all equivalent implementations of their given al-
gorithm using simple transformations, repeated transformations, and subexpression
transformations.

Once all the equivalent forms of the inputs are found, these equivalent forms
can be used to replace the original input expressions. This replacement process is
- shown in Figure 2.11(c) as a projection of the nodes on the lower planar nets back
into the original net: nodes B-5, C-4, D-6, and E-4 are used as inputs into the
BANK-OF-SEQUENCES system, resulting in the new expression, node A-7. As
with this example, the projection upward often generates new nodes in the original
net (node A-7). A new node in the original net is generated whenever the input
replacement results in an expression that has not already been generated through
some other transformation path. These new nodes are equivalent forms of the
original expression: thus, the new nodes cah also be the starting point for further
transformations.

This process of repeated transformation and subexpression transformation
continues until no new equivalent expressions (nodes) can be found.

2.5.2 Infinite Expansion fo the Search Space
for Equivalent Algorithms

Two major difficulties with the search process described above are apparent after
careful consideration: the possibility of the infinite expansion of the search space and
the finite but exponential growth of the space due to the separate manipulation of
subexpressions. The search space will expand indefinitely, if a simple transformation
or acombination of simple transformations repeatedly introduce operators that have
no net effect (e.g., a delay operator followed by an advance operator). This difficulty
is considered briefly in this subsection. The problem of limiting the exponential
growth is the subject of the next section of this chapter.

The transformations used in generating equivalent implementations often
result in signal processing algorithms whose complexity is greater than the manipu-
lated algorithm. For example, consider the problem of finding equivalent implemen-
tations of the matched filters for the frequency chips in the rectangularly windowed
FSK-code detector. One of the rearrangements that is found is shown in Fig-
ure 2.12(a). The subexpressions of this implementation will be manipulated, due to
the combination of recursive search and subexpression manipulation. One of the
implementations discovered by this process is shown in Figure 2.12(b): this structure
results from the application of a rule shown on lines 13-30 of Figure 2.10. Applying
repeated transformation and subexpression manipulation to the structure shown in
Figure 2.12(b) will result in, among others, the structure shown in Figure 2.12(c).
In fact, the recursive transformations and the increasing complexity of the algorith-
mic description would result in the infinite expansion of the search space.

Sec. 2.5 Unconstrained Derivation and Ranking of Equivalent Algorithms 64

. (o2
20 + == (scale e7/0) + = 8
=
z! + B (scale e7/0) + P S
g §
72 — 1 (scale e=J0) - é
. =
z3 — b (scale e /™2 — §
(a)
. =
z° + = 20 (scale e=/0) + 1 B8
2.
z! + > (scale e~/0) + = < :\1>
n
z2 — > z% > (scale ¢ J0) — '(é;
. =
23 - = (scale e /7/2) - &
(b)
, o
20 + 20 20 = (scale e~/9) + - 8
2
z! + > (scale e /%) + — < :>
w
2 - 2% [0 > (scale e /0) - £
[v]
) S
23 - > (scale e /7/2) - 8

(©)

Figure 2.12 An example of increasing complexity resulting from equivalent-form
manipulations.

As can be seen from this example, care must be taken to limit the complexity
of the algorithms before they are used as starting points for further transformations.
In ADE, simplifications are used to control the complexity of the signal processing
expression. SIMPLIFICATION, when applied to a signal processing expression,
returns the simplest direct description of the expression that the environment can
find. The simplest description of a signal processing expression is obtained both by
simplifying its subexpressions and by repeatedly simplifying the modified descrip-
tion. The actual simplifying transformations are encoded in ADE using over 300 of
the 850 rules currently included.

The simplification process in ADE has two potential shortcomings. First, a
good simplification can be missed because the steps required to generate the simpli-
fied form include steps that would cause subexpressions to not be in their simplified
form. This restriction is imposed in order to prevent an unlimited potential growth
in the number of expressions that must be considered. Second, and perhaps more
fundamentally, ADE defines simplifications by a set of rules. It does not have any
hooks for the user to define in what ways an expression is simpler than another one.

62 Computer-Aided Algorithm Design and Rearrangement Chap. 2

Hence, 1t is possible for ADE to “simplify” an expression to a form that is not
appropriate.

Although we have pointed out that unconstrained algorithm manipulation has
limitations, we must also point out that in many cases it 1s still a valuable tool. One
such example is provided by the noninteger sampling rate conversion problem
introduced in section 2.2. By applying unconstrained manipulations and simplifica-
tions to the straightforward implementation of a noninteger sampling rate conver-
sion [shown in Figure 2.1(a)], ADE can automatically derive the computationally
efficient implementation shown in Figure 2.13.° While the structure shown in Fig-
ure 2.13 can also be derived using the constrained manipulations, described in the
next section, there are cases when efficient implementations cannot be derived using
constrained manipulation. One such example is the efficient implementation of
maximally decimated, octave band filters (Figure 2.14).

2.6 CONSTRAINED DERIVATION AND RANKING OF EQUIVALENT
ALGORITHMS

The search for equivalent implementations of a signal processing expression must
consider the equivalent implementations of the subexpressions as well as the com-
plete expression itself. Since each of the subexpressions is independently manipu-
lated and their equivalent forms are independently recombined to form new
equivalent expressions, the size of the search space under consideration grows
exponentially with the number of subexpressions. To illustrate, consider the problem
of implementing the full FSK-code detector for 16 channels. Five independent
descriptions of a simple, finite-length convolution are included in ADE: direct-form
convolution, overlap-save convolution, the Fourier-domain representation of convo-
lution, the z-domain representation of convolution, and the representation of con-
volution as the sum of scaled, shifted versions of the input. Thus, using these
alternate forms as inputs into the incoherent summation, there will be 5' = 10"
equivalent forms to consider. None of these implementations exploit the special
structure of the modulated filter bank: the actual number of equivalent implemen-
tations that have to be considered is more than 10”. Each of these implementations
would then be reconsidered to see if any additional equivalent forms could be found,
due to interactions between the implementations of the matched filters and the
implementations of the incoherent processing. As illustrated by the projected size

of the design space, some set of constraints must be imposed on the search process
to avoid this exponential growth.

*Unconstrained manipulation was first shown to be effective by Myers [2] using a 2 : 3 noninteger
sampling rate conversion in E-SPLICE. E-SPLICE generated a multirate structure of the same form as
the one shown in Figure 2.13 for a 2 : 3 rate conversion. This demonstration of the potential of high-level
signal processing compilation was made even more convincing by the subsequent publication of an
independent article presenting this new type of polyphase structure {16]: E-SPLICE actually anticipated
results from research in the area of noninteger sampling rate conversion algorithms.

Sec. 2.6 Constrained Derivation and Ranking of Equivalent Algorithms 63

h[20n]

| h[20n + 4] |—

h[20n + 8] ——

- h[20n + 12] }—s

~| h[20n + 16]

h[20n + 5}

o h[20n + 9] |—

o h[20n + 13] |—s

~| h[20n + 17] |—

h[20n + 21] }—s

| h[20n + 10] |—n

h[20n + 14] —=
o h[20n + 18] e
>~ h[20n + 22] —

h[20n + 26] —

> h[20n + 15]

> h[20n + 19] |—

> h[20n + 23] b—

- h[20n + 27] |—

~ h[20n + 31] }—=

Figure 2.13 An cfficient implementation of the 4:5 noninteger sampling rate
conversion.

2.6.1 Approaches for Avoiding Exponential Growth
of the Algorithm Design Space

One possible strategy for limiting the exponential growth in searches for efficient
implementations relies on the cost measure of each subexpression to heuristically
prune the space. Instead of enumerating all the equivalent implementations of a
signal processing expression and then filtering out the inefficient and uncomputable
structures using the overall cost measure, this strategy would immediately prune the

64 Computer-Aided Algorithm Design aond Rearrangement Chap. 2
Ideal LPF
pass band: 12 N
lw| < 7/2
Ideal BPF
> pass band: ~ |4 N
72 < |w| < 37/4
Ideal BPF
- pass band: -~ |8 Y3
37/d < |w| < Tx/8
Ideal BPF
pass band: l16 - Y4
T7/8 < |w| < 15%/16
Ideal HPF
— pass band: = |16 > Vs
15#/16 < |wl] < =
(a) Direct implementation of maximally
decimated octave-band filters
Ideal LPF
— pass band: [|2 =¥
lw| < #/2
Ideal LPF
—{ pass band: > |2 =)
lw| < 72
Ideal HPF Ideal LPF
| pass band: |+ |2 f] — pass band: = |2 33
m2<|w| < |w]| < #/2
Ideal HPF Ideal LPF
L{ pass band: 12 | —={ pass band: {2 [+ Y4
T2<|w| <7 | w | < 72
Ideal HPF
— pass band: = |2
T2<|w| <7
L ideal HPF
pass band: |- |2 (Y5
r2< || <7

(b) A more efficient implementation of maximally decimated octave band filters

Sec. 2.6 Constrained Derivation and Ranking of Equivalent Algorithms 65

number of subexpression implementations, prior to their upward propagation, based
on their relative costs. This approach relies on the assumption that, when propagat-
ing two alternate implementations upward, the more expensive implementation will
not be incorporated into any of the efficient implementations of the enclosing
expression. Unfortunately, this pruning strategy suffers from the interaction of
subexpression costs: the cost of using one implementation of a subexpression is often
ameliorated by reusing part or all of the subexpression in some other part of the
enclosing expression. For example, the computational savings of the FFT-based
STFT results from the interaction of the computational cost of the subexpressions:
it is the reuse of the partial summations which reduces its computational cost
to O(N log N). Thus, the contribution of a subexpression to the overall cost of
an enclosing expression is not independent of the other parts of the enclosing
expression.

The approach that ADE takes to limiting the search space is to attempt to
exploit the internal regularity of signal processing algorithms. Signal processing
algorithms are often described at different levels of detail. For example, the four-
point, rectangularly windowed, short-time Fourier transform of a sequence can be
described by either of the structures shown in Figure 2.15. The structure in Fig-
ure 2.15(a) is by definition the STFT. Figure 2.15(b) shows a fully expanded short-
time FFT structure, i.e., one in which common subexpressions are not combined.
Starting from the high-level description of an algorithm, the regularity in the low-
level computational structure can often be asserted. For example, when the SHORT-
TIME-FT system is expanded into the structure in Figure 2.15(b), the underlying
regularity inherent in Figure 2.15(b) can be noted. By enforcing these internal
correspondences in the low-level descriptions, the space of equivalent forms that is
explored can be drastically reduced. This approach to pruning the search is heuristic.
However, the regularity of the computation suggests that the efficient implementa-
tions will reflect the same regularity: if separate sections of an algorithm are very
similar, then the efficient implementations of these separate sections are likely to
coincide.

To illustrate what is meant by internal regularity within an algorithm, consider
the description of the short-time Fourier transform given in Figure 2.15(b). This

Figure 2.14 Implementation of maximally decimated, ideal, octave-band filters. Maximally
decimated octave-band filters are useful in speech and image coding as well as perceptual
modeling. A simple and direct implementation of maximally decimated. octave-band filters,
using ideal low- and band-pass filters, is shown in part (a) of this figure. An implementation
that is more computationally efficient is shown in part (b): here the band-pass filters in the
octaves above base-band have been divided into cascades of high-pass filters. followed by
decimation, followed by another stage of high- and low-pass fiiters. This implementation is one
example of a computationally efficient implementation which would not be found using
constrained manipulation as it is described in section 2.6 of this chapter. The reason that this
implementation would be missed using constrained manipulation is that each branch of the
algorithm is treated differently: the branch that computes y, is unchanged, the branch that
computes y; is separated into two stages of filtering/decimation, the branch that computes y;
is separated into three stages of filtering/decimation, and so on.

66 Computer-Aided Algorithm Design and Rearrangement Chap. 2

x ———| (short-time-ft ry[n} 4) |——n

ry[n] = (rectangular-window 4)

(@
P
0,0,0
X z9 > 0 R
N g Pyo |+ 0.0 (scale e~0) 0,0 S
0
P +
X z! - Qo. ~ (scale e=/90) Ro.
X ; Pori | +
z
0 Pioo
X -
Z Q R
P,oa - 1,0 —io 1.0
x 22 v (scale e /Y) s
1
P + -
11,0
Xl 1 0, N _jur2 R\, g
P _ (scale e) =
R 1,11 ,
X e { >
Z -
1]
P00 _ 2 Y[n,, n,]
X i ZO Q R e
+ 2,0 . 2,0 5]
x ;2 Pro. . -1 (scale eJ0) $ 5
2 »
. P — .
X——] ! 210 0, (scale e9) Ry, R
x 3 Py +
- >
b4
X 0 Pyo0 -
—]
b4
P - Q3,0 _io Rsp
X .2 3,01 (scale e 7/7) S
3
P -
3,1,0 (0] R
X] zl > 3,1 R (Scalc eﬁj'/2) 3,1
Pa 1,1 -
X et 23 >
(b)

Figure 2,45 Two alternate descriptions of a four-point, rectangularly windowed
short-time Fourier transform.

implementation of the short-time Fourier transform is provided explicitly by one of
the transformation rules included in the definition of SHORT-TIME-FT. The reg-
ularity of this implementation is also explicitly noted by the rule. In particular, the
similarity of the sequences feeding into the BANK-OF-SEQUENCES is pointed out
using a “‘correspondence constraint’’: by placing a correspondence constraint on the
subexpressions feeding into the BANK-OF-SEQUENCES, the similarity of these
subexpressions is recorded. As will be discussed later in this section, a correspon-
dence constraint forces the similar subexpressions to be subject to a single series of
transformation rules, so that, if a transformation is applied to one of a set of similar

expressions, that transformation must also be applied to all the other members of
the set.

Sec. 2.6 Constrained Derivation and Ranking of Equivalent Algorithms 67

In addition to the point of similarity at the BANK-OF-SEQUENCES, the
structure shown in Figure 2.15(b) has two other levels of similarity at the inputs to
the addition/subtraction systems: at each of the two butterfly stages, the first addend
into the kth butterfly is similar to the second addend into the same kth butterfly.
Thus, more correspondence constraints are placed on the inputs into each of these
systems. Through these correspondence constraints, the similarity of the corre-
sponding subexpressions is explicitly noted, resulting conceptually in the manipula-
tion of Y{n,, ny], Si[n], Re.[n], Ow.i[n], and P, .[n] where

Y{n, n] = Spyny)

S[n] = Rioln] + Rii[n]
Ry [n] = e/ Q, \[n]
Qriln] = Peroln] £ Peiafn]

Peimln] = x[n + 1 + 2m]

By enforcing these constraints, the rearranged algorithms will also have a regular
internal structure and the number of independently manipulated subexpressions is
reduced, in this case from O(N?) to O(logN).

2.6.2 Algerithmic Transformations in the Presence
of Correspondence Constraints

This subsection examines the process of finding equivalent forms of an algorithm in
the presence of correspondence constraints.

When a correspondence constraint is imposed, it is imposed on the inputs to
a system. For example, a correspondence constraint was imposed on the inputs to
the BANK-OF-SEQUENCES in Figure 2.15(b), creating nine sets of similar se-
quences: S, Ry o, Ri.1, Qr.0, Qie.t5 Pe.o.0s Pe.o.15 Pe.1.0, and Py 1 1. Additional correspon-
dence constraints were also imposed on the inputs for S, reducing the number of
separately manipulated sets of signals to five (S, Ri.;, Q«.1, Pi.i.o, and P, ;) and on
the inputs for O, ;, further reducing the number of separately manipulated sets to
four (S«, Re.s, Oku, and P ,). As mentioned above, imposing these constraints
forces the similar signals to be manipulated as a set: the transformation rules are
applied to the set of similar signals, instead of just to the individual signals. To
continue the STFT example, if the rule shown on lines 13-30 of Figure 2.10 is applied
to one of the sequences labeled Q, ;, then this same rule must be applied to all the
other sequences labeled Q, ;. The remainder of this subsection considers the changes
required in the recursive search and subexpression manipulation, described in sec-
tion 2.5, to accommodate these requirements.

The approach to finding equivalent forms described in section 2.5 involved
both recursive search and subexpression manipulation. The recursive search, in
which newly generated equivalent forms act as the starting point for further trans-
formations, is used without modification in searches for constrained equivalent

70

Computer-Aided Algorithm Design and Rearrangement

Chap. 2

Figure 2,16 (continued)

(A-l) = - =
Z (scale e/9) + ;
i 1 (scale e~/0) +ha~ o i>
X l g
2 > (scale /%) _ e %
o
j =
L> b4 [—» (scale e-—nlz) _ 5
B-2) = z + (scale e~i%) DO
j - c
N + 1 (scale e™/0) = | %g
’ ; -
i O
N z = 1 (scale e=/0) = L, ég
j 13}
el - ’—" (scale e™i7/2) L
(C-3) = -
c + (scale e~/ |— R
i - &
'—"1 Z + —Q—J (scale e—jO) | . %: %
x —] L
D .
=1 2 o e = (scalc e"'j()) - é %
; [
e — |—{(scale e=/*'%)
(D-4) =
— z0 /L_-f._r—» _
e SeSA 2
] g X1 £
i -£5
1 »
} Q
— z ;—_, © = =
. -5 §
(D-5) = 0 (scale 1) " X s
Z -
4 (scale 1) }—' g %
(scale 1) z <E
Z —
(scale 1) 2 %
X] S s
[+
22 (scale 1) N g8
(scale —1) %
; Y (scale 1) }
Z
(scale —1)
©o = (scale 1) .
(scale 1)
(scale 1) — -
(scale 1) & S5
X —= l E g
(scale 1) a - £t
(scale —1) + (scale e ~/Y) =g
(scale 1)
(scale —1) + @—»
(C'7) = o (SCalC l)
- | (scale 1)
1 (scale 1) 2
: (scale 1) T8
X = E §
[
22 (scale 1) & §-
(scale —1) 3
scale e~/ */2
23 (e) ;
(scale e~/37/2)

Sec. 2.6

(scale e /7%

Constrained Derivation and Ranking of Equivalent Algorithms 71
(B-8) = (B-9) =
(scale 1) scale | (scale 1) s
(scale 1) é (scale 1) (scale 1) é
. (scale 1) @ (scale 1) (scale 1) @
< o ZI ~ + o o
(scale 1) a, (scale 1) (scale 1) [© a.
X— O 5 E> X —] n b
2 (scale 1) N = . =) (scale 1) (scale 1) {& -
N (scale — 1) % N (scale — 1) (scale —1) =3
3 N (scale e/ 72) N B & 3 (scale e~/ ™) (scale 1) é
¢ (scale e/3%/2) - (scale e/3%/2) (scale —)}
(F-10) = (F-11)
(scale 1)
0 (scale 1) >
N (scale 1)
(scale 1)
0 (scale 1) (scale 1) b— (scale 1) X
- (scale 1) (scale 1) —»g’ . (scale —1) "é‘
o (scale 1) (scale 1) —"% - (scale e‘f;"/:) %
scale | scale 1) > & scale o= 372 5
. (scale 1) (sc) % ::> ol scale e) g
(scale 1) (scale 1) — (scale 1) —
22) + b= O
- (scale —1) (scale —)} F 5 (scale 1) F
; y (scale e~ *12) (scale 1) é (scale — 1) '3‘“:
¢ (scale e/ 37/2) (scale — 1) (scale —1)
(scale 1) _
L. 3 (scale —=1) =
Z Al scale e—ij/Z) ‘
(scale e~/ *2)
(B-12) = (B-13) =
(scale 1) — (scale 1) =]
20 (scale 1) + 20 4 (scale 1))
(scale 1) (scale 1) }—
+
(scale 1) L (scale 1) |—ei__ |
scale 1 scale 1 -]
e] 2 e | 2
! (scale .) +_>§] (scae—-) E g
(scale e~/ *1) 2 (scale e/ */2) 'z
- + o - 2
B scale ¢ /3772 = & __;l> . (scale e=/37 2ot | S
— - B
(scale 1) & — e = (scale 1) =1 ®
scale 1) = (scale 1) = 2
22 (scale + b g .2 T g
(scale —1) [(scale —1) a
(scale —1) > e (scale —=1) }—»___|
z (scale 1) — 3 (scale 1) ("]
(scale —1) (scale —1) |l
3 - + S 3 -
Z Y scale e—/31/2 :E Z scale e—]31/2 - E
(scale e~/ 712y _—

Figure 2.16 (continued)

72 Computer-Aided Algorithm Design and Rearrangement Chap. 2

(scale 1)

it

(A-14) 4 (scale 1)

&

(scale 1)
(scale 1)

o)
o

(scale 1)

) (scale —1)

—_ l
(scale e/ 72)

i 2
(scale e~/3772)

X —>

(B-13)
bank of sequences

%E ’
(scale 1) j -
N (scale 1)
- L
(scale —1) —
(scale —1) P>t
3 (scale 1) =1
L 3 (scale —‘l) - »
h (scale e /372 p—ni
(scale e ¥yl]

(Direct-form implementation of 4-point STFT)

Figure 2.46 (continued)

D-4. The structure D-4 is transformed into the structure D-5 and this is used to
replace subexpression D-4 in the expression C-3, resulting in the structure C-6. The
structure C-6 is then transformed into the structure C-7, which then replaces subex-
pression C-3 in the expression B-2, resulting in the structure B-8. The structure B-8
is transformed into the structure B-9. The subexpression F-10 is then extracted from
the expression B-9, manipulated into subexpression F-11, and replaced back into the
expression B-9, resulting in the structure B-12. Next, the structure B-12 1s trans-
formed into the structure B-13 and this structure replaces subexpression B-2 in the
expression A-1, yielding the structure A-14 as the final result.

As mentioned earlier, the actual transformation rules that are used to find
constrained equivalent forms and constrained simplifications are the same as those
used to find unconstrained equivalent forms and unconstrained simplifications,
respectively. It is the manner in which these transformations are combined that
provides the distinction between the constrained and unconstrained searches. In
particular, in unconstrained searches, all subexpressions are manipulated indepen-
dently while in constrained searches, similar subexpressions are manipulated as sets.

As a measure of the importance of imposing correspondence constraints, we
note that for the modulated filter bank example of section 2.4, the number of
possible structures using unconstrained manipulation is more than 10" for the
rectangular-window matched filters and it is more than 10*® for the Hanning-window
matched filters. Using constrained manipulations, the numbers are 13 and 20,

respectively.'” Thus, the use of regularity constraints is essential for solving these
problems.

'“The large number of structures generated by unconstrained manipulation is a result of consid-
ering all possible combinations of the alternate implementations of the subexpressions. Since there are
16 branches with 16 inputs each, the number of possible combinations grows very quickly.

Sec. 2.7 Contributions and Limitations ‘ 73

2.6.3 Propagating Correspondence Ceonstraints
to a Modified Structure

When constrained expressions are manipulated, new expressions are often gener-
ated on which the same correspondence constraints should be imposed. To illustrate,
consider the manipulations shown in Figure 2.16. The result of these manipulations
is a direct-form implementation of the short-time Fourier transform (node A-14). In
order to reflect the correspondence constraints of the original structure, this new
bank of sequences should also include two correspondence constraints: the inputs
to the bank of sequences should be constrained to coincide as should the inputs to
the addition systems. Unless these constraints are imposed, this new form will
introduce unconstrained structures into the constrained manipulations. ADE prop-
agates structural constraints to new expressions automatically. When a constrained
expression is manipulated, the inputs that are constrained to be parallel are noted
prior to manipulation. After each manipulation of a constrained structure, ADE

attempts to impose the analogous correspondence constraints on the modified
structure.

2.7 CONTRIBUTIONS AND LIMITATIONS

Our goals in this chapter were to describe the mechanisms by which an integrated
signal processing environment could manipulate signal processing algorithms and to
demonstrate the potential of these manipulations. ADE has been used within this
chapter to demonstrate this potential.

ADE makes extensive use of general signals, rules, and regularity constraints.
General or abstract signals provide the variables in the manipulation of algorithms
while the rules in ADE about signal processing provide the information required to
manipulate this ‘“‘signal processing algebra.” Regularity constraints limit the expo-
nential expansion that manipulation of subexpressions introduces by exploiting the
internal regularity of signal processing algorithms to limit the size of the explored
search space. This regularity in the low-level signal processing descriptions is noted
using information provided by the higher level description of the same operation.
Without these constraints, many FFT-based and polyphase-based algorithms would
be beyond the scope of consideration, due to exponential expansion of these design
spaces.

ADE demonstrates the potential of integrated signal processing environments.
Its algorithm rearrangement capabilities have been used to generate innovative,
computationally efficient implementations in two well-developed areas of signal
processing. However, much work remains to be done to transform the concepts
embodied in ADE into practical signal processing workstations:

e The user interface should be made more accessible and pleasant.

® A fast algorithm-rearrangement facility, providing only well-known algorithm
implementations, should be included as an alternative to the current rearrange-

74 Computer-Aided Algorithm Design and Rearrangement Chap. 2

ment facilities which do constrained searches of the full design space. This
facility would provide quick compilations by ignoring the possibility of efficient
nonconventional implementations. An example of this facility would be one
that would provide the classic implementations of a noninteger sampling rate
conversion [e.g., Figures 2.1(b) and (c)] without exploring the full design
space. This facility would miss the more nonconventional implementations
(e.g., Figure 2.13).

e The derivation of explicitly recursive algorithms, such as the one shown in
(2.3)—(2.6), is an unexplored area of research.

® Regularity within expressions should be automatically detected. In ADE, the
regularity of a signal processing algorithm must be explicitly pointed out.
Although propagation of the regularity constraints, both within the algorithm
and to modified expressions, is supported by the environment, the initial
description of the constraints must be done manually.

As can be seen by the breadth of this partial list of “things to do,”” much work
still remains to be done to achieve a signal processing environment that facilitates
the algorithm manipulation as well as numeric processing of signals and algorithm

definition. However, as asserted previously, the rewards for research in this field
have thus far been high.

ACKNOWLEDGMENTS

We would like to acknowledge the contributions to this work by Professor Hal
Abelson, Professor Randy Davis, Dr. Webster Dove, Dr. Robert Kahn, Dr. Evan-
gelos Milios, Dr. Douglas Mook, Dr. Bruce Musicus and Professor Victor Zue. We
would also like to thank Dr. Gary Kopec, Dr. Evangelos Milios and Dr. Malcolm
Slaney for their comments and help with this chapter. This work was supported in
part by the Advanced Research Projects Agency, Lockheed Sanders, Inc., the
AMOCO Foundation, and Schlumberger-Doll Research.

REFERENCES

[1] M. M. Covell, “An Algorithm Design Environment for Signal Processing,”” RLE Tech-
nical Report 549, Cambridge, Mass.: MIT (1989).

[2] C. S. Myers, “Signal Representation for Symbolic and Numerical Processing,” RLE
Technical Report 521, Cambridge, Mass.: MIT (1986).

[3] G. E. Kopec, “The Signal Representation Language SRL,” IEEE Trans. Acoustics,
Speech, and Signal Processing, 33 (August 1985), 921-32.

Chap. 2 References 75

[4] W. P. Dove, C. S. Myers, and E. E. Milios, “An Object-Oriented Signal Processing
Environment: The Knowledge-Based Signal Processing Package,” RLE Technical Re-
port 502, Cambridge, Mass.: MIT (1984).

[5] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing (Englewood
Cliffs, N.J.: Prentice Hall, 1983).

[6] J. S. Jaffe and J. M. Richardson, “A Code-Division Multiple Beam Imaging System,”
in Proc. OCEANS '89 (1989):1015-20.

[7] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Englewood
Cliffs, N.J.: Prentice Hall, 1989).

[8] P. M. Peterson and J. A. Frisbie, “Interactive Environment for Signal Processing on a
VAX Computer,” in Proc. ICASSP’87 (1987):1891-93.

[9] W. P. Dove, “Knowledge-based Pitch Detection,” RLE Technical Report 518, Cam-
bridge, Mass.: MIT (1986).

[10] E. Sacks, “Qualitative Mathematical Reasoning,” in Proc. of the Int. Joint Conference
on Artificial Intelligence (1985):137-39.

[11] The Mathlab Group, MACSYMA Reference Manual, Lab. for Computer Science,
Cambridge, Mass.: MIT (1983).

[12] Symbolics, Inc., Symbolics Common Lisp: Language Concepts, Cambridge, Mass.:
Symbolics, Inc. (1986).

[13] R. C. Singleton, “An Algorithm for Computing the Mixed Radix Fast Fourier Trans-
form,” IEE Trans. Audio and Electroacoustics 17 (June 1969):93-103.

(14] J. D. Markel, “FFT Pruning,” [EEE Trans Audio and Electroacoustics 19 (December
1971):305-11.

[15] D. P. Skinner, “Pruning the Decimation in Time FFT Algorithm,” IEEE Trans. Acous-
tics, Speech and Signal Processing, 34 (April 1976):305-11.

[16] C.-C. Hsiao, “Polyphase Filter Matrix for Rational Sampling Rate Conversions,” in
Proc. ICASSP’87 (1987):1056-59.

[17] MathWorks, Inc., MATLAB: User’s Guide, Natick, Mass.: The MathWorks, Inc.
(1989).

[18] Signal Technology, Inc., ILS: Interactive Laboratory System, Goleta, Calif.

Chap. 2

Computer-Aided Algorithm Design and Rearrangement

Appendix A.1 The sequence of transformations used in going from the 16-channel
rectangular-window modulated filter bank to the pruned FFT structure shown in

76
APPENDICES

uonesyiduns +
.. ndur-payys-Ajenbaun,, 3[ru uLoj-jusfeAInbe W21sAS WUBLIEAUL-YIYS pazifesauad
' Jo suonesijdde [ajjeied

2 aeds

2 apeos il

grapf- pregl-

2 9eos

el-

zai—? E3S

Q Y
Q N

N ,

0/ 0/”’0’ zuf—? 2B
s [~O\ 0/...@%00& Lo Q) AT 7L
| R = K
G LR O e
£ /0\ {0\0 V »; /0 ’0»0»‘»0»0» -
ERG) Lo MG]
24 SA NE
g S/ NG

2 afeds

g/ l—

(LA e Y
[/ N\ metdl A\
S ‘Im_TwI]

| a[ess

uonesyidus +
. Adoo 1a1sew,, apru woj-waeainba indino 14 swin-uoys

||||||||||||||| -
—/. ‘I“I _ :- ! 4 -+ Y "
™~ I 14 swn-yoys uiod-g] |
o e ——————— i
Wc uonesyijduns +
.rﬂ LS se,, a[nu wioj-1ua[eainba indino jueq 131[1 pIlenpotu
_ o |
AIT —=|_ 4 | X' _
| pueq 12)[1j palg[npoul [SUUBYI-g| |
s .

77

bank of sequences

Appendices

Chap. 2

uoneoyijduns +
. ndui-payiys-Kjjenboun, | 3jru wioy-juaeainba waasAs uelIeAUL-YIYS pazijesousld
’ Jo suonedtydde [ajjesed

e e — —

L= 201 Q))
N1\
Ve NV/AE

2 2[eOs

_ 0//.\M

af-

==

) WX ...’Aq % @

Ny A e et

OO = KK e L SN =

A -GN Tt OO

& /.A.ov".l.'e\...“..“."...l _w._v& %’“ “

N R AT

A et -

S AN
e N
© \Lﬁladl—veth]
el E e. E _r°. E

uonedyidwis 4
. andui-payiys-Ajenbaun,, 5[uwo)-jud[EAInba WIISAS JuELIRAUL-YIYS pazijesauad
Jo suoneoidde [a|jesed

1 9eas

Computer-Aided Algorithm Design and Rearrangement Chap. 2

78

bank of sequences

0/&

vonedyduns +
_ndut-payys-Ajenbaun,, 9|ns uLoj-UA{EAlnbY WIDSAS JuRLIEA s pazifesoudd
Jo suoneandde joppeaed

.
/]
o/~
N
)
e
D)
QGE
Ao
RN
@) \/ovs O
Y
i =
!

P

[ajeds

Q\

BECESC

uonedyryduas +
_ndur-pajys-Ajjenbaun, | o4 wi10j-1u3jeAInba WASAS JUBHIBAUL-IYS pazi[esaudd
Jo suonedtidde joj[eind

cui.? 2EdS

| a[eds

] afess

| apeds

e e e ——— e — — —

79

Appendices

Chap. 2

bank of sequences

)

Qe

1 3eds

2 aJeos

gregi—

2 o[edS

graf-

1 aeas

e‘ll

L7 2an31§ ul umoys

uoneoyiduns pautensuooun

uonesynduwis 4+

. andut-payiys-Afjenbaun,, 3[1u wI0j-1ud[RAINDY WAISAS UBLIBAUL-YIYS PIZI[eIdudd

Jjo suonedidde [a[esed

s 144 paunid

i

o 1 3{eos

I 2[eds

e’ll

i

80 Computer-Aided Algorithm Design and Rearrangement Chap. 2

Appendix A.2 The sequence of transformations used in going from the 16-point
short-time Fourier transform with a 16-point Hanning window to the structure shown
in Figure 2.8.

e == 7‘
} ¥] 16-point short-time FT

| (causal-hanning-window-sequence 16) | |
e 4

“‘using-ID-FFT”’

short-time FT output equivalent-form rule
ﬂ (see development labelled **ID FFT transformations'")

+ simplification

M 1
| | —
| | - T
l | & g &
l [| = ER
! | 2 éi v scale |
| | = Ll 12
o —_ —
| HEER
ES il 8 £ 1,
,WFP‘O =2 L
| ZE| lL'"D?;B~
23 = o =
[2tk e scale
! 3 { —_ Zh«l/z
l T - [
| CLELSE
=4 s = [1
| M esE
l = =~z
(=
, l =
1 = = L
{ J % [f—’
&) 182
L] TE| —
______ =g

- | G-

@ Transformations shown in Appendix A-1

&

Structure shown in Figure 2.8

ID FFT transformations

Let “‘token™ represent the abstract discrete-time sequence generated by the
short-time Fourier transform output equivalent-form rule “*using-1d-ff”’

token —|
_____________ FFT
T . 0 0=
| (causal-hanning-window-sequence 16)
b e o]

causal hanning-window sequence

equivalent-form rule *‘master-copy™
+ simplification

Chap. 2 Appendices

equivalent-form rule ‘‘master-copy’’

causal hanning-window sequence
+ simplification

16

12

(cosine-sequence %) —

I
!
|
|
|
l
!

(causal-rectangular-window-sequence [6) —»| FFT — scale |

e
commutative. associative system output
ﬂ equivalent-form rule *‘self-application’
token —»
(causal-rectangular-window-sequence 16) ~ FFT | __|scale| _
(constant-sequence l)——— 16 172
N TN scale|
| (cosine-sequence —)—+> 1
I L
cosine sequence equivalent-form rule ‘‘master-copy™’
+ simplification
rr-———"—"—"F"/"f"7/T T T T T e e 1
: token —s]
i (causal-rectangular-window-sequence 16) I FFT scale
q H Pt -
! (constant-sequence 1) | 16 1/2
[. C 2 |
{ (complex-exponential-sequence 1_6) 5 scale I
| (complex-exponential-sequence :1261) —12 :
e a
additive-system output
equivalent-form rule **added-input’
+ simplification
token 8
(causal-rectangular-window-sequence 16)
o FFT scale
token —| 2 16 " 172
(causal-rectangular-window-sequence 16)

~

|

|

! . 27

| (complex-exponential-sequence T)
t

!

. -2
{complex-exponential-sequence —16—")—

additive-system output
equivalent-form rule ‘‘added-input’

token

(causal-rectangular-window-sequence 16)

token
(causal-rectangular-window-sequence 16)

(complex-exponential-sequence —lzg) -

additive-system output
ﬂ equivalent-form rule ‘*added-input’

+ simplification

FFT
16

81

82

|
|
|
l

I (causal-rectangular-window-sequence 16)

(causal-rectangular-window-sequence 16)

Computer-Aided Algorithm Design and Rearrangement Chap. 2

additive-system output
equivalent-form rule ‘*added-input’”’

+ simplification

token
(causal-rectangular-window-sequence 16)

token

FFT
16

. i
(complex-exponential-sequence ;—6")

token

scale
-1/2

. e)
(complex-exponential -sequence I;(:r)

additive-system output
equivalent-form rule ‘*added-input’’

token — H | | FFT
(causal-rectangular-window-sequence 16)— 16
[_ lokcn—-ﬂ FET _l
\ (causal-rectangular-window-scquence 16)— T 16
| . 27 |
complex-exponential-sequence ==)~
l____(___p___p_,____q___‘f’)___._____ J | L +scale
1
token — T =172
(causal-rectangular-window-sequence 16)— JT = FlF6 -1
(complex-exponential-sequence —Tg")
FFT output equivalent-form
rule ‘*‘modulated-input™
token —- H FFT
et
(causal-rectangular-window-sequence 16)—= 16
token 10 FFT (circular-shift
(causal-rectangular- 16 —1 16)
window-sequence 16)
T T T T T e e e 71 L | scale
f token — | —-1/2
| (causal-rectangular-window-sequence 16) I1F FlF(,T .
' (complex-exponential-sequence -~ i
LT ponentlalsequence e)T T]
FFT output equivalent-form
rule *‘modulated-input’’
token —={]
I+ FFT
(causal-rectangular-window-sequence 16) — 16
token . A
FFT (circular-shift
(causal-rectangular- 16 [-116) -
window-sequence 16)
Y b scale
- -1/2
token—= I FFT |_, |(circular-shift| |
(causal-rectangular- ! 16 1 16)

window-sequence 16)

scale

12 [_'

scale
1/2

scale

172

Chap. 2 Appendices 83

Appendix A.3 The sequence of transformations used in going from the 16-point
short-time Fourier transform with a 32-point Hanning window to the structure shown
in Figure 2.9.

16-point short-time FT
(cuusal-hanning-window‘sequence 32)

{see development jabelted 1D FFT transformations™)

short-time FT output equivalent-form rule “‘using-ID-FFT"
+ simplification

N
»o
8 &
g £
-
i =h
.~
u‘m —F
N E__

[,

{4 own-ous yiod-9t

MOPUIM-PT

{91 0} [o0 -}

16-point short-time FT
2

A4
eIy "rlé(nl

H | scale
-1/2

16-point short-time FT
rielnl scale

12
c 16-point short-time FT m
’ rielnl
{6-point short-ime FT m
x
27
ey "’15["‘
SELl e 2
| scale
12

(n
1 8 &
| A 8
| 3 —_— 0
=3 <o Q
i E} =
b £ =
3 T
l g 8 &
\ . 85t
| ~ =& |/
-l
‘ a |t
4

two applications of
2d-window output equivalent-form rule *shifted-input’’
+ simplification

84 Computer-Aided Algorithm Design and Rearrangement Chap. 2

two applications of
@ 2-d-window output equivalent-form rule

**shifted-input’™”
+ simplification

o o T |
— | 16-point short-time FT || ™
o~ [| r (] 1 .
_____ = g & L 16 _J
r INE 8| — T T T T T~ I
! _mMersi
| Zis| (5%
R == e
By gl! [2 T - L scale
l X_ﬂr.)l:q::/_('ET Blg Zh—pl/zh-»
2 =
Ii ?f: ;r'l'> o ™ é; ¥ scale
] = ozl 38 112 %]
| s =4
—— e =TT e -
—————— : {_x 16-point short-time FT =
L 7 rielnl

multiple applications of
short-time FT output cquivalent-form rule *‘master copy™’
+ simplification

multiple applications of
generalized homogeneous system equivalent-form rule *‘unequally-scaled-input’
+ simplification

multiple applications of
generalized shift-invariant system equivalent-form rule **unequally-shifted-input”’
+ simplification

structure shown in Figure 2.9 (a)
iD FFT transformations

Let “‘token™ represent the abstract discrete-time sequence generated by the
short-time Fourier transform output equivalent-form rule “‘using-1d-fft”

i token

FFT output equivalent-form rule
“aliased-input’”

(causal-rectangular-window-sequence 16) — FET
token H 16
[(causal-hannine-window-seauence 377 1
L (casalhanning-window-vequence 32) 5 >
16 FFT
(causal-rectangular-window-sequence 16) 16

causal hanning-window sequence equivalent-form rule *“master-copy’™”
+ simpiification
cosine sequence equivalent-form rule **master copy™’
+ simplification
(causal-rectangular-window-sequence 16)
token
(causal-rectangular-window-sequence 32) —y]

(constant-sequence 1) 11
(complex-exponential-sequence Ir) R E =
32 scale
-27 117
32

(complex-exponential-sequence)

\g!

scale
12

(causal-rectangular-window-sequence 16) 16

Chap. 2 Appendices

ID FFT transformations continued: manipulation of structure below

(causal-rectangufar-window-sequence [6)—
FFT
token H 16
(causal-rectangular-window-sequence 32) ' II ||

(constant-sequence 1) II—
(complex-exponential-sequence %’)—» ¥ scale L
5 g
Sy . -2 -1/2
(complex-exponential-sequence 3)—

-
P

two applications of
commutative, associative system output equivalent-form rule
“*self-application™
+ simplification

(causal-rectangular-window-sequence 16)

token—ﬂ II | FFT

(constant-sequence 1) —] 16
. 2 N
(complex-exponential-sequence =T)—w . r
32) scale
. -2)
(complex-exponential-sequence ;‘7") —] 112
tour applications of
additive-system output equivalent-form rule

added-inputs™*
with simplification between

token —] H | FFT ||

(causal-rectungulur-window-sequence 16) 16

T T T T T 1
, token — ,
l(causal-rectangular'window-sequencc 16) — T — F\F()T + —_ rr—
| (complex-exponential-sequence 2—:)—” L2 | |
O - husp v Z_Tscaie

token -1/2

(causal-rectangular-window-sequence 16) —={ [T t— FFT [-
- 16
(complex-exponential-sequence 327”)

FFT output equivalent-form rule
“‘modulated-input”’

token FET
| | Il
{causal-rectangular-window-sequence 16) 16
token —|

(causal-rectangular-window-sequence 16)™*

FFT vreulirchif
|| (circular-shift
I 1 ~1 16)

{complex-exponential-sequence —322”)T T scale
token — 12
FFT

(causal-rectangular-window-sequence 16) II L-T 16

—21r)

(complex-exponential-sequence m

86 Computer-Aided Algorithm Design and Rearrangement Chap. 2

ID FFT transformations continued: manipulation of structure below

(causal-rectangular-window-sequence 16)_—4
FFT
token II 16

(causal-rectangular-window-sequence 32) I1 srln6ft

(constant-sequence 1) II

¥

— 27
(complex-exponential-sequence 5) 5 L] scale ||
—-12

(complex-exponential-sequence ;327”)—]

generalized shift-invariant system output equivalent-form rule
**single-shifted-input’

(causal-rectangular-window-sequence 16) —s! shift ~ 16 [
shift FFT |__
" 16 16

(causal-rectangular-window-sequence 32) —,]

(constant-sequence 1)—+]
: 27 E
0 2X-EXPO al-s Ll PR
(complex-exponential-sequence >) 5 scale
o et

(complex-exponential-sequence ;1,221) — —12

two applications of
commutative, associative system output equivalent-form rule **self-application”

+ simplification
FFT
16

(causal-rectangular-window-sequence 16) shift — 16

token ~—

(constant-sequence)
(complex-exponential-sequence 2) —»1
32 >
(complex-exponential-sequence :}%) —+]

two applications of
additive-system output equivalent-form rule **added-inputs’’
+ two applications of
additive-system output equivalent-form rule **shifted-added-inputs”
with simplification between

token —+ I shift FFT |,
(causal-rectangular-window-sequence 16) shift —16 16 16
token
(causal-rectangular-window-sequence 16) shift —16 I Skl"éﬂ - F]F()T L] M e
(corﬁplex-exponcmial-scquence i—;) — L
} v ——vl scale
token . ~1n
(causal-rectangular-window-sequence 16) shift —16 1 Sllll6fl - F]FﬁT -
(complex-exponential-sequence aEL)=

32

three applications of
generalized shift-invariant system output equivalent-form rule *‘single-shifted-input’’
+ simplification

Chap. 2 Appendices 87

three applications of
generalized shift-invariant system output equivalent-form rule *‘single-shifted-input™
+ simplification

token shift 16 N FET

(causal-rectangular-window-sequence [6) — 16
_______________________ A
token shift 16 |

(causal-rectangular-window-sequence 16) — JT FIF6T - rr
(complex-cxponential-sequence H)-—-» |
32 — — o
———————————————— — ¥ b scale .
token shift 16 1/2

(causal-rectangular-window-sequence 16) — IT F1F6T ™

(complex-exponential-sequence #)

FFT output equivalent-form rule
“‘modulated-input™”

lf)ken shift 16 IT | FET
(causal-rectangular-window-sequence 16) —+ 16

L
token —{shifi 16— ol e
(causal-rectangular-window-sequence 16) — II — 6 [(cnriullalr;;hm ™ L
—]

-2
(complex-exponential-sequence 3;;)

o scale
token shift 16 12
(causal-rectangular-window-sequence 16)— [T = Fl}:,)T 1
-2

(complex-exponential-sequence 1;7”)

SYMBOLIC
AND KNOWLEDGE-BASED
~ SIGNAL PROCESSING

EDITORS
Alan V. Oppenheim

Massachusetts Institute of Technology

S. Hamid Nawab

Boston University

Prentice Hall
Englewood Cliffs, New Jersey 07632

