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ABSTRACT 

In this paper, we present a novel system for detecting known audio.  

We start with Waveprint, an audio identification system that, given 

a probe snippet, efficiently provides reliable forced-choice ranking 

of entries from an audio database.  For open-set detection, we can 

re-examine the best-ranked matches from Waveprint using simple 

temporal-ordering-based processing.  The resulting system has 

excellent detection capabilities for small snippets of audio that 

have been degraded in a variety of manners, including competing 

noise, poor recording quality, and cell-phone playback.  The 

system is more accurate than the previous state-of-the-art system 

while being more efficient and flexible in memory usage and 

computation.   
 

Index Terms— Acoustic Applications, Acoustic Signal Detection, 

Pattern Recognition, Music 
 

1. INTRODUCTION 

Detecting whether or not a snippet of audio is contained in a 

database of known audio is useful in many audio-identification 

tasks [4, 6, 10, 12], since it allows the system to move into an 

open-set scenario.   The approach that we take is conceptually 

similar to one used in open-set face identification [11].  Under that 

approach, the system starts by forced-choice ranking of the 

database entries according to their probability of matching a probe.  

The top-N ranked matches are then used to provide score 

normalization.  Depending on the distribution of these top scores, 

the probe is accepted or rejected as being in the database. 

       Since the forced-choice ranking provides us with the identity 

of our presumed song, the ordering that it provides must be 

extremely reliable:  We cannot hope to achieve error rates that are 

significantly lower than those of this front-end ranking system.  At 

the same time, since this ranking system is operating on a large 

database (the full population of interest), it must be 

computationally efficient. To allow database-size scaling, the 

memory used by the full database and the computation used in 

matching must be tightly controlled.  We use Waveprint [1], a new 

approach to audio fingerprinting, since our studies have shown that 

it is efficient in both memory usage and computation while being 

highly accurate on closed-set ranking. 

       In this paper, we present our full detection system.  We briefly 

review the approach to closed-set audio identification, taken by 

Waveprint.  In Section 3, we describe the various approaches that 

we explored to move from the top-N (N=20) ranked list to a 

detection decision.  In Section 4, we provide experimental results 

under a wide range of probe-song degradations.  We include a 

comparison to a state-of-the-art audio-detection system [10].  We 

conclude with a discussion of possible future work. 
 

2. THE WAVEPRINT SYSTEM 

Since we start with forced-choice ranking and use its results to 

select a small subset of our known audio population for subsequent 

consideration, the choice of recognition system for this first stage 

is extremely important.  Our final accuracy rates are limited by the 

accuracy of this initial stage.  Furthermore, our final evaluation of 

computation and memory requirements will be at least as high as 

this first stage.  We chose the audio-identification system, 

Waveprint [1], due to its efficiency and accuracy. 

    Waveprint uses heavily quantized (tri-level) wavelet-image 

decompositions of spectrogram segments to generate sparse bit 

vectors.  Such tri-level wavelet representations have been shown to 

be robust in content-based image-retrieval applications [7].  Based 

on experimental results, we use a segment length of 1.48 seconds 

for this processing. 

    The tri-level quantizer assigns 80-98% of the wavelet 

coefficients to zero and the remaining coefficients to ±1. These 

predominantly-zero-valued coefficients are listed as sparse bit 

vectors, using a non-compact but simple bit-pattern encoding: each 

zero value is listed as “00” and ±1 are listed as “01” and “10”.  

Following this conversion to a bit stream, only 1-10% of the data is 

non-zero.  We use this sparseness to compact, and subsequently 

efficiently match, the representations using Min-Hash processing 

[3].  Min-Hash provides a compact fingerprint such that the 

similarity between two fingerprints gives a measure of the 

probability that the original two streams were identical.  For large, 

sparse bit streams (such as ours), a statistically strong measure of 

similarity can be achieved using a comparatively compact 

representation: Waveprint uses p=100 independent Min-Hash 

counts, with each count limited to a hard maximum of 255, 

allowing representation in 100 bytes.  We refer to these Min-Hash 

signatures as sub-fingerprints. 

    The final element in Waveprint is the use of location-sensitive 

hashing (LSH) [5] to efficiently find similar known-audio sub-

fingerprints, using probe sub-fingerprints.  This efficiency allows 

the final system to find nearest neighbors in a p=100-dimensional 

space by looking at (on average) only 0.26 of each million entries 

in the full database [1]. 

    In summary: For robustness to noise and time or frequency 

distortions, Waveprint uses heavily quantized wavelet-image 

decompositions of spectrograms.  For efficient memory usage and 

pairwise-efficient comparison, Waveprint then applies Min-Hash 

techniques to the quantized wavelet coefficients.  For efficiency in 

retrieving candidate matches and robustness to distortions, 

Waveprint uses a hashing-based method for nearest-neighbor 

retrieval.  

     The above processing is applied to known-audio spectrograms 

with a step size of s seconds between sub-fingerprints (that is, s 

seconds between the starting points of neighboring, overlapping 



1.48-second-long spectrogram segments).  The resulting sub-

fingerprints are inserted into the LSH tables for in-memory 

database access. 

    The same processing is applied to the probe-audio spectrogram.  

To avoid de-synchronized sampling issues, we use a smaller, d-ms 

sampling stride on the probe.  Each probe sub-fingerprint is used 

to index into the database.  The support from the resulting 

candidates is combined across time using both local and global 

dynamic time warping (DTW) constraints.  Specifically, the probe-

to-known mappings, formed by combining across sub-fingerprint 

candidate matches, are constrained to a global tempo change of 

less than 10% and a local match slope from probe to database 

position that is non-negative.  

    As described in [1], Waveprint has many desirable properties 

due to the combination of techniques that it applies.  However, this 

combination also has a large, non-linear surface of best parameter 

combinations.  In testing for the best tradeoff amongst forced-

choice performance, memory usage, and computational load, [1] 

examines over 50,000 parameter combinations.  The results 

suggest that the best operating points are around: quantization of 

5% of wavelet coefficients to non-zero values; use of p=100 Min-

Hash permutations to form the sub-fingerprints; subdivision of the 

sub-fingerprints into 25 sub-hash key inputs for LSH with a 

minimum of 5 sub-hash votes for each sub-fingerprint addition to 

the candidate match list; and on the order of 100,000 hash bins in 

each of these 25 LSH sub-tables.  For this paper, we will report 

results using these parameters.  Since the probe-snippet length is 

typically defined by the application, we consider three different 

lengths: 10 sec, 30 sec, and 60 sec.  Since s (the database 

sampling) directly affects memory usage and since both s and d 

(the snippet sampling) affect computational load and accuracy, we 

also examine distinct values for these:  specifically, probe sampling 

of d = 23.2 ms, 46.4 ms and 92.8 ms and database sampling of s = 

0.46 sec and 0.92 sec.  We did not examine database sampling 

strides longer than s = 0.92 sec since, from closed-set experiments 

[1], the performance of the ranking task drops by 10% (absolute 

error) for database sampling that is coarser than a second.  This 

closed-set performance will directly affect our open-set 

performance due to its position as a first-stage process.  
 

3. VERIFICATION PROCESSING 

Once the force-choice ranking is available, we can take the top-N 

songs and treat the problem as a verification process.  Since the 

number of songs that are now being considered is much smaller, 

we can use more elaborate processing without having a strong 

impact on the overall speed of the detection system: we do not 

have to worry about scaling with database size, since we are no 

longer working with the full database.  Furthermore, if secondary 

storage is available, we can access additional data about each of 

the target/cohort songs with little impact on the overall system: we 

do not need to fit this addition information into main memory, 

since we can read from disk for N=20 cohort songs without 

significant disk-access overhead. 

    This freedom has led us to examine 3 different options for signal 

generation to be used in verification: 

1. Waveprint-only approach: This is a baseline approach.  It does 

no additional processing and instead uses the already-generated 

quality-of-match scores (and their ratios) as our input to a 

pass/fail classification system. This choice is clearly lowest cost 

in terms of computation (no additional) and disk usage (none). 

2. Original-spectrogram approach: This approach is at the 

opposite extreme.  It retrieves the actual target/cohort songs from 

disk and compares those directly with the probe snippet.  This 

requires disk storage for all the songs in the database, since we do 

not know which of these will be in the target/cohort set.  

However, it only requires disk access and computation time for 

the N=20 songs that are ranked highest by Waveprint. 

3. Time-indexed Waveprint approach: This approach falls between 

the two above extremes.  It uses the same sub-fingerprint database 

as is used by Waveprint. It uses the temporal ordering of the sub-

fingerprints as they were computed from original songs, along 

with the DTW alignment parameters, to improve our statistical 

support for each match score. 

    For both the original-spectrogram approach and the time-

indexed Waveprint approach, we refined the time alignment, 

starting from the alignment given by the first-stage Waveprint 

processing.  To support this, the first stage provides the location 

pair for the strongest sub-fingerprint match (the location within 

each song-probe pairing that had the smallest Hamming 

difference).  We examine alignments that, at this pinned-location 

pair, are within ±s seconds of this strongest alignment (where s is 

the database sampling stride used in the first-stage Waveprint 

processing).  In addition to this 2s-offset margin, we consider 

matches that change the tempo by no more that 10% (that is, the 

wedge formed by the 90% and 110% tempo lines).  In this way, 

using DTW, we can refine the temporal-alignment parameters from 

the values selected by first stage process.  This refinement is called 

for since, for highly distorted probe snippets, the match support 

that is used for the original temporal alignment can be very sparse.  

The second stage can provide more reliable estimates, since there 

is more statistical support across the length of the probe snippet. 

    In the original-spectrogram approach, at each spectral-slice, the 

squared-difference term between the DTW-aligned database song 

and probe snippet is normalized by the inverse of the volume from 

the two slices being matched.  These weighted mean-squared errors 

between the probe and database-song spectrograms are computed 

for each of the top N songs.  Under this original-spectrogram 

approach to classification, we extend the vector of scores provided 

by Waveprint with these MSE scores.  This approach is 

comparatively expensive, both in terms of required disk space and 

in terms of computation for the normalization, prior to weighted 

MSE comparison.  However, this expense is independent of 

database size, making it a practical alternative. 

    For the time-indexed Waveprint approach, we made use of the 

local DTW constraint that each probe sub-fingerprint can match 

only one song sub-fingerprint to find the weighted least-squares-fit 

line to those pairs. The weighting that we use is a scaled 

subfingerprint-match strength:  we reduce the strength of each of 

these sub-fingerprint matches according to the strength of the 

matches between the probe sub-fingerprint and the other (not-

selected) song sub-fingerprints that were within the allowed 

wedge. The final output score from this stage is the mean-squared 

error between the match locations and the best-fit line, again 

weighted by the scaled subfingerprint-match strength.  These 

output scores are used as inputs to our classification system, along 

with the original Waveprint scores. 

    Finally, we also considered two different mechanisms for 

categorization: (1) support-vector machines (SVMs) [2] and (2) 

linear regression.  For the SVM classifier, we used SVM Light [8] 

and tried a wide variety of parameter settings both with linear and 

RBF kernels.  For the linear-regression-based classification, we 



used the classification library available in Python. For both SVM 

and linear regression, we provide the classifiers with a vector 

containing, for each of the top-20 first-stage Waveprint matches: 

(v1) the first-stage match quality score 

(v2) the scores in (v1), normalized by the best (largest) first-stage 

match score 

(v3) the time extent of the first-stage match (that is, how long in 

seconds was the supporting DTW track, giving an indication of 

the matched-segment length) 

(v4) the count of the supporting subfingerprint pairs in the first-

stage match (that is, how many subfingerprints contributed to 

the match score) 

(v5) if applicable, the MSE score from the second-stage processing 

(v6) if applicable, the score in (v5), normalized by the best (lowest) 

MSE score. 

This gives an 80-dimensional vector ((v1–v4) x top-20) for the 

Waveprint-only approach and a 120-dimensional vector ((v1–v6) x 

top-20) for the original-spectrogram and the time-indexed 

Waveprint approaches. 

    For all 36 cases (2 classifiers x 3 proposed second stages x 6 

sampling regimes), we trained the classifier using a mixture of 

1000 degraded probes, operating against a database of 35,000 

minutes of music. For each probe, we ran the open-set 

identification twice: once with the (un-degraded) originating song 

in the database and once with that one song removed.  To evaluate 

our performance, we tested on a different mixed set of 1000 

degraded probes, again probing under both source-present and 

source-absent conditions. 

    The degradations of the probes are an equal sampling of: 

(d1) time-offset only (part of (d2–d11) as well) 

(d2) added echo (90% reverb after 100 ms) 

(d3) frequency equalization (same as in [6]) 

(d4) 32-kbps MP3 (MPEG2 layer 3) transcoding 

(d5) 4.75-kbps AMR (cell-phone) transcoding 

(d6) loud “lyrical” added noise (from Enya) 

(d7) loud “death-metal” added noise (from Veil of Tears) 

(d8) -2% linear-speed modification (LSM) (slower/lower-pitch) 

(d9) +2% LSM (faster/higher-pitch) 

(d10) -10% time-scale modification (TSM) (slower/same-pitch) 

(d11) +10% TSM (faster/same-pitch). 
 

   4. EXPERIMENTAL RESULTS 

In our tests, there was no significant difference amongst linear-

kernel SVMs, RBF-kernel SVMs, and linear regression. Given 

this, we use simple linear regression, as it provides fast and easily 

computed scores as well as high accuracy.  All of the results 

reported in the remainder of this section use linear-regression 

classification. 

    We compared the detection performance amongst the 3 

proposed second-stage approaches: Waveprint-only, time-indexed 

Waveprint, and original-spectrogram comparison.  As expected, 

Waveprint-only did not match the performance of the other two 

approaches, having about twice the equal-error rates of the other 

two approaches under best conditions.  Even using a 60-second 

probe snippet, it failed to achieve better than 98% performance, at 

its best equal-error-weighting setting. 

    More surprisingly, the time-indexed Waveprint and the original-

spectrogram comparison performed at nearly identical levels.  They 

were always within 0.5% of one another, under the equal-error-

weighting criteria, with no bias on which system would do better.  

Given the increased cost of the original-spectrogram comparison, 

in both disk usage and computation, this equal performance makes 

the time-indexed Waveprint approach preferable.  For the 

remainder of this section, we will consider only that option as our 

second stage. 

    We tested six combinations of database and probe sampling 

strides.  Unlike closed-set ranking [1], the open-set performance 

was equal for the 3 tested probe-sampling strides, d = 92.8 ms 

performing as well as the others.  In contrast, the second-stage 

open-set detection did improve with fine-grain database sampling: 

s=0.464 sec had an equal-error rate that was 28% lower relative to 

that of s=0.928 sec (1.5% lower in absolute terms).   This was 

unexpected, since the first-stage ranking does not improve 

significantly with this finer-grain database sampling [1].  The 

improvement in classification occurred primarily due to better 

classification of the positive cases (when the snippets are present).  

The classification improvement was associated with (v3) for the 

top 5 choices.  When the database sampling stride is 0.92 sec, these 

top matches can have a much-reduced DTW duration, due to 

negative interactions between this sampling and the distortions 

within the probe.  The shorter database sampling stride (0.46 sec) 

provides longer temporal support to correct matches.  The shorter 

database stride also provided a more reliable measure of the MSE 

distance given by the second-stage processing. 

    Based on these results, we selected time-indexed Waveprint, but 

used mixed parameters across the two stages.  Under this hybrid 

approach, we collect database subfingerprints at the shorter stride 

(s=0.46 sec) and split this densely sampled database into two 

interleaved sets.  One set is written to disk in time-sequential order.  

The other set is used for the first-stage processing (as well as for 

interleaved usage in the second stage).  By saving the extra 

subfingerprints on disk but still having them available for 

temporally-ordered retrieval, we reduce the overall memory usage 

to 0.45 GB for a 35,000-minute database. In contrast, the fully in-

memory approach would take nearly a twice as much memory 

(0.87 GB).  The only complication to the partially in-memory 

approach is that we must recompute the temporal duration of the 

first-stage match support by extending it to include any close-

enough sub-fingerprints that were in the on-disk half of the 

database.  Since these on-disk interleaved subfingerprints are only 

used in the second-stage process, this approach requires only 20 

seeks/reads from disk (corresponding to the top-20 ranked songs), 

making this approach practical even with the delays of the disk 

access.  

    Finally, we examined the relative importance of the different 

components in the 120-dimensional classification vector by 

examining the weighted variance provided to the classifier output 

by each dimension.  To avoid drawing spurious conclusions, we 

retrained the linear classifier 11 times with different training sets.  

The majority of the classifier-output variance (78-80%) derives 

from (v3) for the top-5 ranked songs: that is, the temporal duration 

of the DTW tracks that support the top 5 ranked songs.  The 

remaining classifier-output variance is almost evenly split between 

(v5), the MSE scores of the second stage, and (v1), the match-

quality scores of the first stage.  As expected, low (v5) MSE scores 

in the top-5 ranked songs support a “present” classification.  More 

surprisingly, the classifier uses the average top-20 ranked first-

stage match scores (v1) as evidence against a match.  An intuitive 

explanation for this is the classifier is discounting matches of 

nondescript probes that match many songs well. 

    In Table 1 and Figure 1, we compare our performance to a 

publicly available, state-of-the-art system [10].  For these 



comparisons, we used their published code base [9], with the 

volume normalization modified to adapt to the local 5-second 

RMS energy. This modification uniformly improved our results 

from Ke’s code base [9]. Figure 1 shows the ROC curves for both 

Ke’s and the time-indexed Waveprint systems, using 10-, 30-, and 

60-sec probes under an equal-weighting mixture of distortions 

(d1–d7).  This omits the time variations (LSM and TSM), since 

Ke’s code base [9] did not include the extension needed to support 

timing changes. Table 1 lists performance numbers for all 11 

distortion types separately.  As mentioned above, these results 

were gathered using a test set of 2000 samples (1000 probes x 

present/absent).  The probes were from a separate set than the 

training data used for the linear classifier stage.     

    Our detection results are consistently better than the previous 
system [10] on the same probe sets, showing more than 80% 

relative reduction in error for 30- and 60-sec probes.  We perform 

better with a 10-sec probe than Ke’s system [10] does with a 60-

sec probe.  Finally, we did nearly as well with 30-sec probes as 

with 60-sec probes, making longer probe lengths unnecessary. 

    In addition to accurate performance, detection systems must be 

able to handle large databases efficiently.  Using our selected 

parameters, the time-indexed Waveprint system uses 0.45 GB of 

memory for a 35,000-minute database (about ½ for the sub-

fingerprints and ½ for the LSH tables which point to them).  The 

processing time is dominated by the first-stage Waveprint ranking 

system.  On a single-CPU 3.4-GHz Pentium, operating against a 

10,000-song database, this system operates about 14× faster than 

the probe-length time (that is, 46-285× faster than the average 3.5-

minute song length, depending on probe length).  For the selected 

parameter set, this speed will be largely unaffected by database 

size.  In our tests, these memory and computation-time 

requirements were significantly lower than that of [10].  This claim 

is supported by memory-usage and complexity analyses of the two 

systems [1]. 
 

5. CONCLUSIONS 

In this work, we have presented a new approach to detection of 

known audio.  We use Waveprint ranking [1] to move the problem 

from detection to verification. By re-using the same sub-

fingerprints that are used by the first-stage ranking system and by 

storing interleaved fingerprints to disk, we do not increase our 

memory requirements above that system’s usage.  Since the 

interleaved fingerprints are only needed on a small set (20 songs), 

using disk storage does not substantially affect our speed.  Our 

only additional processing is similar to the second-look stage from 

[6], with the significant difference that our second-look processing 

is only on the top-N ranked songs, not the full candidate list that 

share sub-fingerprints with the probe. 
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Figure 1.  ROC curves for time-indexed Waveprint and for the 

modified Ke’s system [10] on a time-distortion-free set (d1-d7) 
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Table 1.  (% False-positive)/(% True-positive) rates for time-

indexed Waveprint and for the modified Ke’s system [10] 

The operating point for the time-indexed Waveprint (t-i Wave) was the 

equal-error setting for the mixed-distortion probe.  The operating point 

for Ke’s system was defined by the maximum likelihood ratio from the 

statistical models in their codebase. 

Distortion  Detection 10s probe 30s probe 60s probe  

(d1) Time-offset 

only 

t-i Wave 

Ke 

0.5/99.7 

2.9/98.7 

0.6/99.9 

5.9/98.7 

0.5/99.9 

4.6/98.8 

(d2) Echo 
t-i Wave 

Ke 

0.6/98.5 

2.9/97.6 

0.6/99.6 

5.8/98.2 

0.2/99.4 

4.6/98.5 

(d3) Freq. 

Equalizer 

t-i Wave 

Ke 

1.1/99.3 

2.9/97.9 

1.1/99.8 

6.2/98.2 

0.3/99.7 

4.5/98.5 

(d4) 32kbps 

MP3  

t-i Wave 

Ke 

0.4/96.9 

3.5/91.9 

0.4/98.5 

6.2/92.1 

0.4/98.7 

5.0/91.7 

(d5) 4.75kbps 

AMR  

t-i Wave 

Ke 

1.1/88.3 

2.0/77.8 

1.0/98.8 

4.0/94.9 

0.7/99.2 

3.4/96.6 

(d6) Noise 

(Enya) 

t-i Wave 

Ke 

0.6/73.3 

0.9/34.7 

0.2/94.2 

1.9/61.8 

0.3/96.3 

1.4/69.7 

(d7) Noise 

(Veil of Tears) 

t-i Wave 

Ke 

7.6/85.1 

7.3/60.7 

9.3/93.5 

9.7/72.0 

11.9/95.8 

9.2/75.4 
     

(d8) LSM -2% t-i Wave 2.4/94.2 2.6/97.0 4.4/99.0 

(d9) LSM +2% t-i Wave 0.7/62.2 0.3/90.0 0.4/94.3 

(d10) TSM -10% t-i Wave 0.6/99.4 0.7/99.4 0.6/99.4 

(d11) TSM +10% t-i Wave 0.6/98.0 0.8/99.6 0.6/99.6 

 


