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ABSTRACT

Locality Sensitive Hashing (LSH) is widely used for efficiene-
trieval of candidate matches in very large audio, video, iamage
systems. However, extremely large reference databasessitxde a
guaranteed limit on the memory used by the table lookupfjtael
matter how the entries crowd different parts of the sigreapace,
a guarantee that LSH does not give. In this paper, we provide s
guaranteed limits, primarily through the design of the LSihdbs.
When combined with data-adaptive bin splitting (needed oly o
0.04% of the occupied bins) this approach provides the redui
guarantee on memory usage. At the same time, it avoids theedd
recall that more extensive use of bin splitting would give.

Index Terms— Multimedia databases, Information retrieval,

Fingerprint identification, Pattern matching

1. INTRODUCTION

Many approximate nearest-neighbor problems require datelire-
trieval under tight memory and computation constraints2[13].
Most notable among these are audio and video retrievalmgsieat
must handle both time-based editing (excerpts and mashaumus
frame-based editing (visual overlays and audio re-mixes) partial
matches across time, the size of the database must growdaggor
to the number of minutes of content, instead of just accgrtirthe
number of distinct clips, leading to billions of entries. ©to the
large size of the reference set, we need to know that we wiémige
required to read back more than a small fraction of that satatter
how these entries crowd different parts of the signatureespa

Data-adaptive tree structures, such as spill trees [4]bearsed
to limit the maximum number of retrieved candidates, ushegMari-
able depth to subdivide crowded portions of the space. Hervéve
recall rate for such adaptive tree approaches is difficuthomitor,
since the radius of retrieval in each region is not known teetwmn-
struction of the tree. For applications like partial-copstettion,
where high and predictable recall rates are needed, we geam
ing data-adaptive approaches only when even careful de$igon-
adaptive tables fail to meet our memory limits.

Locality Sensitive Hashing (LSH) [5] provides predictal#eall
rates, since the retrieval characteristics are defined &yfhline
design of the hash keys. With LSH, each reference entry &ted
into L tables using different subspace projections. The simpledt
most computationally efficient projections are axis patafrom a

the actual reference database and our memory guaranteest Mo
of this work focuses on the selection of the hash subspadenib |
the expected, worst-case crowding in the LSH tables. Whiig-a
parallel projection limits the set of possible distinct hhasibspaces

to [T, (P01, that number is still unmanageably large for
our operating point [2], giving 1.90% distinct 25x4 possible
groupings. The size of this space leads us to use a greedjosolu

In a closely related problem [1], a greedy approach was also
taken to select among the hash-subspace possibilitieatmbork,
the reward criteria was minimum within-band mutual infotioa,
thereby maximizing the number of bits of entropy across tioelg
of hash tables and minimizing the average candidate-ligjtle As
will be seen in Figure 3, minimizing mutual information dosst
minimize the worst-case memory usage for a look up.

To minimize thisworst-case cost, our reward function focuses
on providing the smallest-size, and smallest number offollé& SH
bins. We select aubmodular reward function, based solely on these
overfull bins. This submodular property both improves theesl
of each search for groupings (effectively allowing additibsearch
without prohibitive training time) and provides a bound awhfar
below optimal our solution is. By bounding the optimum siminf
we know how much loss we suffer from any proposed solutioris Th
bound on the optimal, taken from the greedy solution, candoe-c
bined with “seeded” greedy search, providing both efficisdrch
into improvements on the fully greedy solution and a stogjairite-
ria on an outer search for a good seed.

Section 2 reviews submodularity, how this property allofis e
cient evaluation of greedy solutions, and the bound pralgethe
submodularity. Section 3 reviews the specifics of our probéend
introduces our submodular reward function. Section 4 thices
an efficient approach to representing the above-threstwtibps of
our LSH frequency distributions, which is needed to supedfit
cient evaluation on this problem. Section 5 discusses seg@edy
search, to improve on our basic greedy solution. We provide e
perimental results in Section 6, using data-adaptive biittisg to
handle any remaining occupancy violations. Section 7 cmled
and proposes future directions for study.

2. SUBMODULAR REWARD BOUNDS AND
EFFICIENT GREEDY SEARCH

Since the optimal solution to our grouping problenNB-hard, we

BL-dimensional signaturd? distinct dimensions are taken for each take a greedy approach to finding a “good” solution. For ganer

of L LSH “bands”. Our work uses axis-parallel projection, siitce
supports our discrete-valued, non-ordinal signatures§][2,

reward functions, even finding the greedy solution requivés?)
evaluations of that reward function (with= L B for our problem).

We propose to use LSH, with off-line optimization of the hash In this section, we review submodular-reward functionsiciipro-

subspaces, in order to minimize the worst-case expectediarg.
We also use (on-line) data-adaptive bin splitting, as meguby

vide an efficient way to find the same greedy solution that doul
have been found by th@(n?) evaluation but uses onl§(n) evalu-



ations and, more importantly, which provide bounds on haviréan nal system by allowing data-adaptive LSH bin splitting tsune our
optimal a greedy solution can be. operational limits are not exceeded. For these hot-spatitots, we
Submodular reward functions have been proposed since 2004 fextend the hash key by the values from additional signatimernt
greedy solutions [7]. A submodular reward functid?() compares sions. As much as possible, we wish to avoid this solutiargesit
the reward of adding an elemefitto possible solution set4 and B, has the same uncertain recall as other data-adaptive .seadw].
whereA C B. For a submodular reward function, the incremental Therefore, this investigation has focused on how well weftzten
reward for adding”' to solutionB is always less than or equal to the the LSH lookup table occupantgfore expanding the banding keys.

incremental reward for adding to solutionA: R(BUC)—R(B) < In summary, a family of submodular reward functions on the
R(AUC) — R(A). If we use a greedy algorithm to find the solution thresholded occupancy space gives the desired behavior:
to a problem with submodular reward structure, we are giieean R(H) = — Zﬂﬁﬂ@f(zi) —2f ()

to be within(1 — 1/e) of the reward of optimal solution [7] (which o . L
is NP-hard to find). wherez; = h;/t; is the scaled LSH occupancy for & bin.

. . For the results in Section 6, we used = 0.01% of the training

greequ;tZglrS:i(c)JLe’rr?osnla_eesflf(i?:;/::t’lyethiﬁ [?s] gﬁz(s:lrllatl)gv\\;\llti Crﬁggg th%opulation andf(z) = xlog, x. Since the dynamic range of this

! ) o reward function is very large, we implemented its evaluatiothe
eral reward structures by using this decreasing increrieataard log space
characteristic to sort our solutions, without full re-exstion at each ’
step. A version of dynamic programming, Cost-Effectivey &or-
ward (CELF) evaluation maintains a list of available candidate steps, 4. EFFICIENT ABOVE-THRESHOLD HISTOGRAM
sorted based on the recorded incremental reward of that $tap REPRESENTATION AND UPDATE
sort mixes together current and out-of-date incrementedre val-
ues. If the best next step has an out-of-date reward, itemmental  one jssue with using detailed LSH-bin occupancies, instefad
reward is re-evaluated and it is bubble sorted down thelfiste best  gypectancy-averaged statistics as were used in [1], igtibaiccu-
next step has a current reward, itis guaranteed to be thetegsior  ancy of the LSH tables must be represented and updated adgth e
a greedy approach. We take that candidate step (removimgnit f 51 qidate change to how the LSH band is formed. The number of
the available list) and update the remaining candidatesdidates  angidates that must be evaluated are as highB &3 on the first

that would have used the just-taken dimension are removettie | step (BL available dimensions crossed withavailable groups) and
just-updated LSH band is full, remaining candidates fot f&nd  yecrease from there.

are removed from the list; otherwise, their incrementalals are
marked as out-of-date_. In this way, many steps can be takfa_lee uniform, we can efficiently represent the portion of the ¢abh
the greedy solution without re-evaluation of the full sepoksible i o) penalty is computed by listing the bin key for ortipse
rewards. Since we use a submodular reward, we can sort tilgethbins that are at above-threshold occupancy. The disteibstiis-
a mixture of out-of-date and current incremental rewardesland ing candidate extensions to the LSH-band key are then eftigie
kr_mow that, when the best_candldatt_e_addltlon has a curr_er_ai_r_tbw evaluated, starting from the current listing of overfulhdekeys and
will also be the best candidate addition over all currentsjimiities. mapping the new distribution using only those signatures téll
into one of those bins, now split according to the proposaetitiad
3. SUBMODULAR REWARD FUNCTION FOR to the LSH-band key. Finally, this map of the subdivided feob
MINIMIZING ABOVE-THRESHOLD OCCUPANCIES atic bins is scanned to create the new list of overfull birssy(im the
extended LSH-band space). This will find all of the overfutisin
Our reward function should control the number and size of-ove this new space, without a complete re-mapping of the fuihing
full LSH bins. We quantify this by setting a thresholdg,, on the  set, since adding a dimension can only reduce bin occugancie
LSH-bin occupancyh: LSH-band bins with occupancy belaw are For our experiments (Section 6), the number of overfull bins
ignored, since they do not contribute to the worst-casescédiove  peaks at 1000-4000, when the LSH-band key is only two dimen-
this threshold, we create a reward function that decreasesding sions. That number drops as additional dimensions are aaloiéd
to —2/(*) wherez = h/t, and L f(z2) > L f(z1) Vz2 >  the subdivisions of the overfull bins all fall below thresthoHow-
z1 > 1. Using a super-linear function of the above-thresholdrati ever, even with 1000-4000 overfull bins, the number of aékins
as an exponent rewards splitting large bins into multiplal&mnbins,  requiring evaluation is a small and decreasing count, ih Bbsolute
even if all of the smaller bins are above threshold. Thisegponds and relative numbers.
to the desired penalty behavior: even though we conceptdall As we go through the greedy process for grouping the dimen-
not want any bin occupancy to be above threshold, it is muaisevo sjons, we keep these lists of overfull bins only for the cuirrac-
to have a single bin far above threshold than to have mulbiple  cepted LSH bands, discarding those for the candidate sfEipis.
somewhat above threshold, since the first case will resutiuch reduces the memory used during training, allowing for latggn-
larger variance in the total candidate-list length tharstheond case, jng sets. Instead of using large amounts of memory, we resoten

for any fixed look-up list. the overfull-bin lists for the accepted candidates as theywacepted
We make this family of reward functions submodular, despitejnto the solution.

the bin-occupancy thresholding, by offsetting the rewayd6%,

so the reward is zero at = 1. Without this offset, the reward is

discontinuous at = 1, destroying the submodular property. With 5. SEEDED GREEDY SEARCH

the offset, the reward is zero far< 1: itis zero atz = 1 by virtue

of the offset and itis zero for < 1, since these values are excluded Our reward surface has many local optima, making greedyckear

from our evaluation. error prone. However, since our reward function is submagiwe
As will be discussed in Section 6, even with our best groupingknow that the optimum solution is, at most, 63% better than th

solution, we will still have “hot spots”. We address this iardi- greedy solution. This bound can limit our search for betbéuttons,

Since the distributions that we are working with are very-non
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after evaluating the greedy solution. In addition, with submod- o

ular reward structure, we can use CELF to efficiently find thetb 1 o

greedy-search completion from any “seed” from which we viish ~ {o

start searching. By using combination of bounding (for ieation) o

and efficient greedy completion of solutions, we efficiegilyde our

search into other parts of the space. £ o
To get our bound, we first evaluate the fully greedy solution ..

starting our search without seeding. This greedy solutinadly

provides a comparatively low-reward solution. The intaitbehind

this is that the fully greedy process in effect wastes itstrposver-

fu| too|s J— the most uniform Signature dimensions — on thﬁ firs F|g 1. The two most non-uniformly distributed dimensions in the

L steps, by initializing the previously empty bands. Thisdssl ~100-dimensional signature (left), as well as the two mogbumly

effective than using these dimensions slightly later ingblition, ~ distributed ones (right).

when the LSH bins that will become problems can be (sligtégt}

ter understood. For once, this low-reward on a greedy swlusi the
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desired behavior, since it gives us a tighter limit on the immann
possible reward that can be achieved. We use that boundg@sto

by randomly selecting groups of 4 dimensions and with banétn
minimum within-band mutual informationrin.-mutual banding),

subsequent search for a good seeded greedy solution at 9% of as proposed by [1].

optimal-reward bound.

To do the CELF modeling, we set the threshold on the CELF ap-

We then restart our greedy search using seeded bands: ,that joach to 0.01% of the training set. This is below our reqlLioper-

starting fromL partially filled LSH bands. To avoid an outer com-

binatoric search for good seeds, we only examined seedseaflien

ational limit, in order to provide better robustness toefiénces be-
tween the training distribution and the operational disttion. We

mension in each of thé bands that we had reason to believe mightysed the seeded greedy search, as described in SectionbsSee

provide good solutions. Our choices for seeds were:

e Lowest-entropy dimensions: By picking these first, we fdrce

the dimensions with the worstverage clumping apart. By

bringing the problem cases to the start, those problemsean

explicitly targeted throughout the greedy-selection pesc

lection using sequential lowest reward gave the best solpvhich
was about 20% better than the fully-greedy solution. Thatrove-
ment did not put the seeded greedy solution within our hdped-

0% limit (relative to the fully-greedy bound on the optinsallu-

tion). This seems surprising, given the large dynamic rasfgeur

reward function. However, there were 4 bins that contrithtihe vast

e Lowest-reward dimensions: This addresses the worst of thﬁ‘]ajority of the penalty on our greedy solutions. These wbiiss re-
worst-case clumping, instead of the worst of the average-casemained at occupancy levels of 0.12-0.2% of the full popatafor
clumping. all of our seeded solutions. All bins would need to be reduced

e Sequential lowest-reward dimensions: With this approachbelow 0.12% occupancy to achieve our target of 90% of thevupti
we selected the group seeds sequentially, looking at the S‘Qound. The sequen_tial lowest reward got closest to that btaoo
of incremental rewards for adding each dimension to eactind these occupancies to the range of 0.12-0.16%.
(already seeded or unseeded) group and selecting the next The results from the sequential-lowest-reward seed, gt
seeding dimension as the one with the lowest minimum rethe test set, are shown in Figure 2 and 3. Figure 2 shows thepgnt
ward. This was similar to the lowest entropy set but differedof the test population across the LSH bands (sorted fronteget
on some of the selections. The difference was due to somkast). The average entropy across all the bands is almokanged
low-reward dimensions actually being more effective takenby the different approaches. However, due to variation éltand

together than taken with other slightly-higher-reward elim  entropy, the average candidate list length for the randondibg
sions. will be about 4% longer than the min.-mutual banding. Theaye

candidate list length for CELF banding is also worse thantlier
min.-mutual banding: the average length will be about 1%gésn
This larger average length is expected, since the min.-ahaiathod
was designed to address the average case.

We also tried some random initializations of thebands, followed
by greedy search to complete the solution. However, mostoran
seeds led to solutions that were worse then the fully greeliyien.

All random-seeded solutions were worst than those founusie Figure 3 shows the worst-case occupancy of the test popalati

abox Sﬁeds'd o st hf ds wh ded in the largest LSH-band bins. This plot shows the improvertieat
Y€ hoped 1o Stop our search for seeds when a seede gree%yachieved using the explicit attention to these worse@azupan-
solution was 10% of our bound on the optimum (given by theyfull

reed lution). As mentioned in Section 6. we insteadrsid cies. The number of bins that were at an occupancy level thates
gfteeer hya\?icr)mgl; rlcjn)t.hrozghitll gf gurseec?sc on 6, we insteadpdp memory problems went down from 0.17% of the occupied LSH bins

for random banding, to 0.12% using min.-mutual banding,.0d%
using CELF banding. More importantly, the worst-case oecay
level went down from 0.25% for both random and min.-mutuaida
ing to 0.16% for CELF banding. Since it is this maximum occu-
We examined two data sets of 150,000 signatures, taken ff@¥@ 3 pancy at the per-bin level that defines what our worst-casaane
distinct media tracks sampled once per second. The firstl@opu usage will be, this reduction in maximum retrieval lengtlerigical.
tion is used to find the LSH bands. The second, independent sd¥lost importantly, the number of entries that were in thesestvo

6. RESULTS

is used only for testing. The 100-dimensional signaturee\wgen-
erated using an approach similar to what is described in T2le
two worst- and best-distributed individual signature dusiens are

case bins was reduced from 12% for random banding, to 8% using
min.-mutual banding, to 2.5% using CELF banding. Since thiid
bution of the expected lookups into the LSH tables is the sasribe

shown in Figure 1. We compare the CELF approach with bandinglistribution of the entries, this reduction in the percegetaf lookups
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Fig. 2. Distribution entropy for the bands created by random assoc Fig. 3. Occupancy of largest bins for the bands created by random
ation (blue dotted circles), min. mutual (green dasheddlizs), and association (blue dotted circles), min. mutual (green eddghian-
CELF (red solid squares). Minimum mutual information doestb gles), and CELF (red solid squares). CELF does best sincait m
by this measure since it optimizes the average case, whishas  mizes the worst cases. This is what we must design for opegdly.
entropy measures.

erwise been used in finding the first solution to evaluateradteses.

that will see the worst-case memory usage is also critical. A direction for future work is to evaluate the effect of chamy

Even with this CELF solution for minimizing the worst case oc the reward function. Another is to expand the set of starsiegds
cupancy, we continue to see a subset of bin Occupancies Hoeve that are evaluated by our greedy search. A third directionlavbe
level that can be easily supported in a large-scale systemthEse 0 work towards an occupancy representation that allowkclesft
problem cases, we combine the techniques used in dataWaptevaluation for simulated annealing or other stochastiarmipation
structures, like spill trees [4], with LSH banding. Whenatieg the ~ @pproaches to search: with such a representation we wouksbe
LSH table, if a bin exceeds a threshold set by our operatiomal  likely to fail _due to a poor seed or to the greedy search trapps in
straints, then the bin is marked as “expanded” and the prevém- @ local maxima.
tries are re-indexed into bins corresponding to the culr&ht band
plus an additional signature dimension. Which dimensioasiaed 8. REFERENCES
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