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Abstract— Understanding the backgrounds and interest of the 
people who are consuming a piece of content, such as a news 
story, video, or music, is vital for the content producer as well 
the advertisers who rely on the content to provide a channel on 
which to advertise.  We extend traditional search-engine query 
log analysis, which has primarily concentrated on analyzing 
either single or small groups of queries or users, to examining 
the complete query stream of very large groups of users – the 
inhabitants of 13,377 cities across the United States.  Query 
logs can be a good representation of the interests of the city’s 
inhabitants and a useful characterization of the city itself.   
Further, we demonstrate how query logs can be effectively 
used to gather city-level statistics sufficient for providing 
insights into the similarities and differences between cities.  
Cities that are found to be similar through the use of query 
analysis correspond well to the similar cities as determined 
through other large-scale and time-consuming direct 
measurement studies, such as those undertaken by the Census 
Bureau.   Extensive experiments are provided. 

Keywords— geographic, log analysis, large-scale similarity 

I.  INTRODUCTION: FROM CENSUS TO QUERY LOGS 
Understanding the backgrounds and interest of the people 

who are consuming a piece of content, such as a news story, 
video, or music, is vital for the content producer as well the 
advertisers who rely on the content to provide a channel on 
which to advertise.  A variety of sources for demographic 
and behavioral information exist today.  One of the largest-
scale efforts to understand people across the United States is 
conducted every 10 years by the US Census Bureau.  This 
massive operation, which gathers statistics about population, 
ethnicity and race, is supplemented by smaller surveys, such 
as the American Community Survey, that gathers a variety of 
more in-depth information about households.  Advertisers 
often use the high-level information gathered by these 
surveys to help target their ad campaigns to the most 
appropriate regions and cities in the US.       

In contrast to the Census studies, passive studies of 
search engine query logs have become common since the 
introduction of search engines and the massive adoption of 
the Internet to quickly find information [9][14].  These 
studies provide the quantitative data to not only improve the 

search engine’s results, but also to provide a deeper 
understanding of the user and the user’s interests than the 
data collected by the Census and similar surveys.   

The goal of our work is to extend techniques and data 
sources that have commonly been used for on-line single-
user (or small group) understanding to extremely large 
groups (up to millions of users) that are usually only taken 
on by large studies by the Census.   We want to determine 
whether the query stream emanating from groups of users – 
the inhabitants of 13,377 cities across the United States – is a 
good representation for the interests of the city’s inhabitants, 
and therefore a useful characterization of the city itself.  
Figure 1 shows the geographic distribution of the queries 
analyzed in this study. 

As a motivating example, consider whether by examining 
the queries emanating from cities in Silicon Valley, 
California could be automatically determined to be similar to 
other technology centers in the United States – for example 
in Redmond, Washington or Cambridge, Massachusetts.   
Beyond a city’s businesses, other factors, such as weather 
patterns, socio-economic distributions, and ethnicities, etc., 
play an important role in which queries are submitted by a 
city’s denizens.     

We show that by effectively combining location 
information (at the city level) with search engine query logs, 

 



we can ascertain the similarity of cities – even those that may 
not be geographically close.    Finding similar cities provides 
a valuable signal to advertisers and content creators.  Once 
success (or failure) is determined for the advertiser/content-
creator in one city, this analysis provides a basis for setting 
expectations for similar cities – thereby providing advertisers 
and content creators new cities to target (or avoid).  
Additionally, knowledge of the interests inherent in a city’s 
population provides important information for biasing 
search-engine results to deliver results with a relevant local 
focus.   It is important to note that all of the signal used in 
this paper can be discovered with minimal privacy concerns 
– individuals do not need to be identified and their individual 
search history need not be used.   

Recently, there has been growing interest in utilizing 
geography as a signal for returning search engine results. 
Many search-engine query log analyses have examined a 
user’s queries to better understand the user’s interests and 
infer the user’s intent [6][13][15]. The hope is that by 
gaining this insight, the search results returned to a user can 
be better tailored to the user’s needs.  Other studies have 
combined the user’s IP location with the query to determine 
what type of content the user may be interested in [8][10] 
and also how to rank the search engine results in light of 
strong geographic signals [2][11].  Systems to efficiently 
combine geographic relevance with relevance as measured 
by more traditional information retrieval measures have been 
developed [3][4].  Often geographic queries do not explicitly 
contain location names. Nonetheless, by looking at the 
geographic distribution of clicks or queries, the geo-
sensitivity of the query can be determined [16][17].   Once 
geo-intent is determined, language models specific to geo-
content or to a particular city can be developed [15]. 

In order to analyze city-level query-streams, three 
problems must be overcome:  

(1) extremely noisy query stream data: many queries 

are mistakes, tests, or spam; 
(2) different population sizes: computer usage and 

access patterns for cities make direct city 
comparisons difficult 

(3) “regression to the mean”: when looking at 
aggregate level statistics, at a coarse level, the 
diversity of populations in a city lead effectively 
to masking differences between cities within the 
differences across queries  (i.e. all cities query in 
large amounts for “Google,” “email,” “Facebook,” 
etc. and in small amounts for “chihuahua”,  
“topaz”, “babaganoush”, etc.)   

In the next section, we describe the creation of our 
ground-truth data from an independent information source as 
well as our basic collection of query data, to be used for our 
similarity measures.  That section includes the method that 
we used to bring the location naming from these two sources 
into alignment, so as to allow subsequent comparison. 

There are numerous manners in which search-engine 
query logs can be processed.  In Section III, we describe two 
feature spaces in which to represent the basic queries: as 
query terms or as query concepts. In Section IV, we consider 
two ways to represent the feature data: by percent or by 
“excess score”. This excess score will be the basis of many 
of our subsequent experiments.  In Section V, we consider 
two different ways to infer city similarity, based on these 
query feature vectors: using cosine similarity or using 
“reverse occurrence” within the query space.   

Section VI presents results from a large-scale empirical 
analysis of our system and a discussion of our results.   The 
paper closes with conclusions and suggestions for future 
work in Sections VII and VIII.    

 



II. QUERY- AND GROUND-TRUTH-DATA COLLECTION 

A. Query data collection 
The analysis presented in this paper is based on seven days 
of logs from Google.com gathered in December, 2009.  From 
this data, over 75 GB of summary data was extracted, based 
on queries originating in the United States.  Based on the 
user’s IP address that submitted the query, each query was 
assigned a geographic “city-level” location, using a database 
of IP-to-location mappings in conjunction with the Google 
geocoder city-level “localities” (discussed later), for a total 
of 13,377 distinct locations.   The accuracy of the IP-to-
geographic mapping varies significantly depending on the 
location.  In particular, the number, layout, and size of the 
internet service providers greatly affect the accuracy of the 
mapping. The city-level locality is at a similar accuracy level 
for many of the IP-address mappings.  We will refer to these 
13,377 localities as CitiesG. 

Very simple pre-processing steps were employed to clean 
the query stream.  First, we normalized each query by 
removing extraneous white spaces, special characters, and 
capitalizations.   Second, we discarded any query that did not 
occur in at least 10 unique cities.   No more complex 
heuristics were employed.  Hereafter, the final set of unique 
queries will be referred to as Q. 

To begin this study, we first wanted to verify our 
intuitions that geography is indeed a factor in query 
distributions [3][16][17].   Figure 2 displays a few example 
query distributions for terms that were highly localized: “San 
Jose Mercury News,” “Northern Virginia Community 
College,” and “Accenture.”    The maps in Figure 2 clearly 
show the geo-localized nature of these queries.   “Northern 
Virginia Community College” almost exclusively appears in 
the northern parts of Virginia.   “San Jose Mercury News” 
appears in San Jose and surrounding towns, a bit in Los 

Angeles, and a bit in New York – places commonly 
associated with venture capital funding for startup 
technologies in Silicon Valley.   Finally, “Accenture,” shows 
that multiple geo-centers are possible and are accurately 
found.   Many of the hot-spots for the query correspond to 
Accenture offices (Chicago IL; Reston VA; Atlanta GA; 
Denver CO) [1].   (For comparison, Figure 1 shows the 
distributions of data across all the queries gathered for this 
study.) 

In contrast to the geographically localized queries in 
Figure 2, the geographic distribution of other queries, for 
example those of a more general interest, exhibit far less 
geographical coherence.   A few such examples, “email”, 
“Google”, and “Christmas,” are shown in Figure 3. 

B. Ground-truth data collection 
There is no definitive measure of city-to-city similarity.  
Often, simple measures such as distribution of income 
levels, ethnicity, or education level are used.   However, 
each of these attributes only captures a specific, small aspect 
of a city.  Rather than limiting our analysis to a single 
dimension or risking introducing potential sources of bias in 
our analysis by hand-selecting a single or small set of 
attributes as our target, we took a more comprehensive and 
automated approach. 

We gathered over 750 city-to-city similarity lists, based 
on information in the census-related surveys.  These lists 
only contained “the top 101” cities (and counties) in the 
United States, in each of the 750 categories.   List categories 
ranged from the expected (population size, percentage of 
population with advanced degrees, average income level, 
etc.) to the obscure (largest percentage of males working as 
cashiers, smallest percentage of divorced people, etc.).  
Each one of these lists was used as a component in our 
ground-truth calculations.    To create our ground truth 

 



similarities, we simply count, for all pairs of cities, the 
number of lists on which they co-occur.   The end result is a 
“city-to-city” association list that contains pairs of 12,873 
unique cities and counties. The highest-co-occurrence of 
any two cities is 30. A wide range of cities is included in 
these 12,873: for example, ranging in population from 9.5 
million (Los Angeles County CA) to 95 (Indian Beach NC). 
This final list has the advantage of measuring similarity 
across a large set of dimensions, and avoids testing biases 
that could have otherwise been introduced by manually 
choosing the most interesting criteria. 

It is important to remember that this namespace of 12,873 
cities and counties have been generated by a completely 
separate process than the logs analysis that generated the 
13,377 CitiesG set.  The set of 12,873 location names are 
simply what was present on the 750 “top 101” lists that we 
used, derived the Census data.  The 13,377 CitiesG set are 
based on the geo-coding of the IP addresses we saw in the 
query logs that we analyzed. As such the names generally 
will not match.  We address this difficulty in the next 
subsection. 

While all 12,873 of city-to-city locations have 
associations with 100 other cities (since each list has 101 
entries), many of them have only that one list as the way 
they are characterized in the city-to-city data.  This weak 
information will be very biased by which list that city was 
listed on, which is exactly what we are trying to avoid by 
using 750 lists.  To avoid this problem, we will only 
consider as target cities for evaluation, those cities that have 
at least one cohort city that shared lists with them at least 3 
times.  This reduces the list of “target cities” down to 8123 
city-to-city locations. We continue to use the full list of 
12,873 as potential partners to each target city, using the co-
occurrence to weight the associations and give more 
emphasis to city pairs that occur more frequently 

C. Location alignment and target city evalutaion 
As noted above, the ground-truth and query-analysis 

results are built on two separate namespaces.  To try to 
bring the two together, we passed each city-to-city name 
through a geo-coder supplied by http://maps.google.com.   
Each location was translated into latitude and longitude 
coordinates.  We then reverse geo-coded each of these 
12,873 latitude/longitude coordinates, mapping each to the 
city-level “localities” used by Google.com. These forward-
reverse geo-coding operations resulted in many-to-one 
assignments from the 12,873 city-to-city lists to Google 
localities.  While all of these mapped into the CitiesG set (for 
which we have query-log data),  the mapping was such that 
they mapped onto only 8093 Google localities. Many-to-one 
mappings typically occurred when counties from the city-to-
city lists mapped to the same locality as one of the also-
referenced cities within the county.  In addition, we also saw 
within-city neighborhood names from the city-to-city lists 
mapping onto the same city-level locality. 

In order to describe how we handle this ambiguity, we 
first consider how we will eventually evaluate the quality of 
our similarity results. In Section VI, we provide a variety of 
analysis tools.  In all cases, we cycle through a list of target 
cities, one at a time, measuring for each the qualities of our 
similarity results (given by logs analysis) compared to what 
was given by the ground truth (given by the city-to-city 
lists). 

So, we define the “target city” as the city-to-city location 
to which we want to measure or rank all the known cities.  
In order to decide which Google locality to use as the target 
city, we simply use the forward/reverse geo-code mapping 
described above.  This gives us a pair of vectors to compare: 
one from the city-to-city namespace, containing sparse 
mappings within a set of 12,872 other city-to-city names 
and the other from the Google locality namespace, giving us 
a dense mapping to 8093 other Google localities that are 
their geo-coding-based “partners”.  Note that, based on the 
list occurrence requirements mentioned in the previous 
subsection, there are 8123 distinct target cities, which then 
map onto only 4478 Google localities.  The full 8123-target 
set is distinct since the target city data is evaluated as a pair 
and the city-to-city sparse mappings will be different for 
each of the 8123 names, even when the query-analysis 
mappings are repeated by the many-to-one nature of the 
association. 

For each of these target cases, we now need to decide 
how to compare a sparse association mapping into the 
12,872 city-to-city namespace with a dense mapping into 
the 8093 Google query-stream localities.  For many Google 
localities, there is only one city-to-city name with a default 
mapping onto that Google locality name.  We fix these 
mappings as our first step.  For the remaining Google 
localities, where the association to a city-to-city name is 
ambiguous, we use an optimistic mapping onto city-to-city 
names that have not already been used.  The greedy 
mapping is done starting from the most strongly associated 
Google locality (that is in the ambiguous set) and picking 
(from the city-to-city set within the 30 km radius) the most 
strongly associated city-to-city name that has not already 
been used.  

The mapping is used in all evaluations, including the 
baseline orderings by geographic distance, total population, 
and population difference, discussed in Section VI.  As 
such, the evaluations done relative to those measures 
provide an accurate indication of the quality of our 
similarity predictions, even though our greedy mapping will 
bring our results into closer alignment with the ground-truth 
data than might be warranted — as long as we only pay 
attention to the relative performance, compared to the these 
alternatives which have the same optimistic advantages, we 
will not overstate our results.  

III. FEATURE SPACE FOR PROCESSING QUERY LOGS 
One of the difficulties in comparing queries, even after 

standard normalization steps are taken, is that queries that 



may initially appear to be far apart, in terms of spelling and 
edit distance, can represent the same concept.   For example, 
the terms “auto” and “cars” are often used interchangeably, 
as are “coke” and “pop” or “mobile” and “phone.”    To 
treat these sets of queries as similar, we replace each query 
with a concept cluster. 

Concept clusters are based on a large-scale Bayesian 
network model of text, as detailed in [5][7].  Datta describes 
the creation of PHIL (probabilistic hierarchical inferential 
learner).  Although a full explanation of the PHIL system is 
beyond the scope of this paper, a cursory overview is 
provided here.  PHIL is a top-down weighted directed 
acyclic graph in which the top node represents “all 
concepts” and the leaf nodes represent individual words or 
compound-word tokens.  The intermediate nodes, which can 
be learned through word co-occurrence statistics over large 
text corpora, are created automatically.   The intermediate 
nodes contain many conceptually similar words.   PHIL was 
originally used as a generative model of text.  For our 
purposes, each query is used as input to the system, and the 
intermediate nodes that are most highly activated are 
assigned to the query.   Similar concept queries will activate 
similar nodes.   Interestingly, this system not only helps 
account for different words often used to represent the same 
concept (e.g., autos/cars) but it also helps to automatically 
correct for common spelling mistakes: the same nodes will 
be activated for common variations of the same word. 

In Section VI, we will empirically compare the use of 
terms and PHIL clusters as the underlying features for our 
system.  

IV. QUERY SIGNATURES OF CITIES 
For each city, we need to compute a signature vector that 
will be used to compare with the signature of other cities. In 
addition to the choice between query terms and query 
concepts, described in the previous section, we must consider 
purely descriptive versus discriminative signature vectors. 

The simplest signature is a (descriptive) histogram of the 
queries that originated from the city.   This has a 
straightforward computation:  for each unique query 
(whether term or concept), q, that occurs from any city in our 
collected set, Q, we count how many times the query 
originated from a city, c.    Each city is assigned a vector of 
integers, of length |Q|.  Many smaller cities will have 
numerous zero entries; these indicate that the query never 
occurred in the city during the sampling time.   To address 
the problem of the wide range of query volumes across 
different cities, the histogram is normalized so that each 
query’s entry reflects the percentage of the total query 
volume the query accounts for.   

A limitation of this simple histogram approach is seen in 
many descriptive signatures: it may place emphasis on non-
interesting portions of the query-space.  For example, we 
expect that a common query such as ‘pizza’ will occur far 
more often than a query such as ‘babaganoush,’ or that ‘blue-
ray’ will be far more numerous than ‘cassette tape.’    The 
fact that these relations repeatedly hold in almost every city 

is neither interesting nor surprising when trying to find how 
cities differ.   Rather, the converse is true: when these 
relations do not hold is when the data is interesting.   

To draw attention to the surprise features of a city, we 
use a simple discriminative scheme that is analogous in spirit 
to the family of TF-IDF [12] procedures commonly 
employed in information retrieval tasks.   We call the 
measure an excess score.  Intuitively, the goal of an excess 
score is to determine how much above (or below) each query 
was from the expected.  We determine how much we 
expected to see a query by treating the entire set of queries 
from all cities (CitiesG )  as a single city, and computing the 
distributions of queries in this aggregated set.    Specifically, 
it is computed as follows.  First we compute the expected 
volume of the query averaged across all cities.  This 
percentage becomes our expectation for that query: 
expectedPercentagequery =  

€ 

Volumec,query
c∈CitiesG
∑ Volumec,q

q∈Q
∑

c∈CitiesG
∑  

Using the expected percentage, we then compute how the 
query volume in a city differed from the percentage we 
expected from that city, given its total volume: 

excessquery|city = 

€ 

Volumecity,query
Volumecity,q

q∈Q
∑

− expectedPercentagequery  

Four points should be made about the excess score.    
First, as shown above, it calculated the “surprise factor” of 
each query per city – it does not represent the volume 
directly.  Alternatively, we could have simply modified the 
calculation to find the excess cities for each query – i.e., for 
each query, find which cities had a higher (or lower) than 
expected occurrence of that query.  First we compute the 
expected query volume of a city, averaged across all queries, 
and then we estimate that city’s expected percent 
contribution to the total number of queries examined in the 
study. 
expectedPercentagecity  = 

€ 

Volumecity,q
q∈Q
∑ Volumec,q

q∈Q
∑

c∈CitiesG
∑  

excesscity|query =  

€ 

Volumecity,query
Volumec,query

c∈CitiesG
∑

− expectedPercentagecity  

Second, it should be noted that the excess scores can be 
negative.  Intuitively, for the cities that have a negative 
excess score for a query, in that city, the query may have 
occurred less than expected. 

Third, the excess score for the queries for any city should 
sum to 0.0.  The fact that some query occurred more times 
than expected when looking at the total volume of queries 
from the city implies that some other query (or set of 
queries) must have occurred less than expected when looking 
at that same volume of queries. 

Fourth, for simplicity, we calculated the expectation as 
the ‘global expectation,’ using all the cities in CitiesG. An 
alternative would be to compute more specific expectations, 



such as using only the nearest n-cities, or dividing the U.S. 
into quadrants, etc.   

In the experiments presented in Section VI, we will use 
the excess scores as well as the simple percentage-histogram 
approach in determining city similarity.   

V. INFERRING SIMILARITY FROM QUERY VECTORS 
Given the excess metrics as well as the simple percentage 
based signatures, described in the previous sections, we 
need to decide how to compute the distance between two 
cities.   We consider two alternative methods.  The first 
method is the standard cosine similarity, which can be used 
with the excess vectors as well as the percentage based 
vectors.   The cosine similarity between two cities A and B 
is defined as: 

Similarity = 

€ 

cos(θ ) =
A ⋅B
A B

 

A second similarity metric is based on computing the 
excess scores for a city given a query (excesscity|query).  For 
this calculation, we examined every query in Q.   For each 
query, q, cities were assigned their excess score and the list 
was sorted.  This sorted list represented which cities had the 
highest (positive) “surprise factor” for q, taking into account 
their expected total volume.   From each list, all cities that 
co-occurred within the top-10 query excess scores had their 
similarity score incremented.  Intuitively, this measures how 
many times each pair of cities coincided on having more 
than expected query volumes for a particular query.    We 
refer to this similarity measure as “reverse-occurrence 
voting”. 

The problem with reverse-occurrence voting is that there 
is no guarantee that every city will be voted for, even once, 
by the query set that was seen.  Even with more than 12 
million distinct query terms, some cities (typically small 
ones) never rise to the top 10 of even a single query list.  
Nearly one fourth of our target cities suffered from this 
anonymity. As can be seen in Figure 4, even those cities that 
did make it to some type of characterization were more 
poorly described by the reverse-occurrence voting than by 
the cosine similarity. 

In Figure 4, we show a comparison of the performance of 
cosine similarity and reverse-occurrence voting, where both 
measures were taken over only the target cities that were not 
anonymous under reverse-occurrence voting (just over 6000 
city-to-city names).  The figure shows the performance for 
all four combinations from Sections III and IV: query terms 
or PHIL clusters with excess or percentage scores.    The 
graph shows how many of the top-10 most strongly 
connected cities were retrieved using cosine similarity 
versus reverse-occurrence, according to the retrieval-set 
size.  The retrieval set is taken from the ordering of most-to-
least similar cities given by each of the two alternate 
measures.  In Figure 4, the x-axis is the size of the retrieval 
set (as a percentage of the full 8093 possibilities) and the y-
axis is the average recall rate for these top city-to-city 
localities, averaged across the non-anonymous target cities.  
Note that the average retrieval using cosine similarity is, for 
this one graph, also averaged on this reduced set of cities 
that was not anonymous under reverse-occurrence voting. 

Not only does reverse-occurrence voting leave many 
cities completely uncharacterized, but it also provides only 
about half of the recall rate, compared to cosine similarity, 
for the same size retrieval set.  For this reason, the 
remainder of this paper uses cosine similarity on the query 
vectors (query terms or PHIL clusters in excess scores or 
percentages) to determine city similarities. 

 
Figure 4  Using cosine similarity vs. reverse-occurrence voting.  The 
average retrieval rates for the top-10 matches for each city when 
retrieving N% (x-axis) of the cities – ordered by similarity – either 
through cosine distance or reverse occurrence, is shown.   For 
example, when cosine distance is used to measure city similarity and 
1.5% of the cities are retrieved, approximately 43% of the top-10 most 
similar cities are included.   When reverse occurrence similarity is 
used, only 20-24% of the top-10 closest cities are included.  This 
significantly lower performance is true whether we use query terms or 
PHIL clusters and whether we use excess or percentage features. 

 
Figure 5 Histogram of the average similarity, from each target city to 
all known cities. The strongly positive biases show that the query 
vectors, whether terms or clusters, percent or excess, vary across our 
localities in strongly correlated ways.  



VI. EXPERIMENTS 
As discussed in Section II-C, our method for mapping city-
to-city names onto Google locality names will tend to bias 
our evaluations towards aligning our similarity lists to be 
more in agreement with the city-to-city lists than would have 
been provided without these naming ambiguities.  As a result 
of this systematic bias, we need to separately measure the 
improvement provided the optimistic name remapping and 
remove it from our evaluation results.  Throughout this 
section, we match the bias-removal method to the summary 
statistic being shown.  

One summary statistic that we provide is the weighted 
connected similarity: measured from each target city to all of 
the cities with which it co-occurred in the city-to-city lists, it 
is the cosine similarity, weighted by the shared-list count.  
We correct this simple statistic using two factors.  The first 
corrects for the similarity that each target city shows to all 
known cities.  The second corrects (on average) for the bias 
introduced by the optimistic namespace mapping.  By 
correcting for both, we can interpret a zero offset similarity 
as being equivalent to random selection of neighbor cities. 

Figure 5 shows the histograms of the first correction 
factor: for each target city, what similarity its query vector 
showed, on average, with the query vectors of all of the other 
known cities.  There is a very strong positive similarity seen 
in all of our query-based similarity measures for our locality 
set. This strong positive average similarity across all of our 
known localities is easy to understand for the percentage 
measures: all of the values for the percentage features will be 
positive, since all percentages are positive, so measuring 
cosine similarity on these vectors will always give a positive 
result.  The even stronger positive similarity seen in the 
excess measures shows that directions of variations in the 
underlying percentages are also strongly aligned: even taking 
a differential measure of the per-location query vectors does 
not scatter these vectors uniformly across the vector space. 
High positive average similarities limit the offset similarity 
that we can achieve: that is, the weighted similarity of the 
linked cities relative to (or offset by) this all-city average.  
Even so, high positive average similarities suggest that our 

excess scores are not measuring noise only: our query 
vectors do contain a lot of related entries that should show 
synchronized variation, which will remain even after taking 
the excess score. 

The second correction factor is a further offset to the 
similarity score to, on average, reduce the effect of the 
optimistic namespace mapping that we are doing.  For each 
type of query vector (term or PHIL, excess or percentage), 
we looked at the scores of all the cities available for any of 
the ambiguous namespace mappings that were within the 30 
km radius of an ambiguous Google locality.  Within each of 
these 30 km sets, we measured the standard deviation in the 
similarity score and then took the average of all these 
standard deviations, across all of the sets. This gives us an 
average measure of how optimistic our namespace mapping 
will tend to be, according to the query vector type.  Since 
these localized standard deviations are not the same for the 
different query-vector representations, we need to reduce the 
offset similarity scores by these representation-dependent 
amounts before comparison. For the four different query 
representations, these corrections reduced our reported offset 
similarity: for percentage query terms and PHIL clusters, by 
less than 0.01; for excess PHIL clusters, by 0.06; and for 
excess query terms, by 0.13.  Our histograms, shown in 
Figure 6, have had their offset similarity scores reduced by 
these amounts before plotting.  

Based on Figure 6 (left) and (center), the excess score is 
more accurate than the percentage scores in finding similar 
cities.  The excess scores are nearly always doing better than 
simple random association, as shown by the excess bars 
(yellow) being 100% of the target cities above the zero 
offset-similarity score.  In contrast, only 58% and 60% of the 
target cities are doing as well or better than random, using 
percent PHIL clusters and percent query terms, respectively.  
Based on this weak result for the percentage terms, we do not 
consider it further. 

Figure 6 (right) suggests that the excess-PHIL vector is 
giving a stronger similarity signal than are the excess-term 
vector: the excess-PHIL vector has nearly 50% of the target 
cities at or above an offset similarity score of 0.3, while the 
excess-term vector has only 10% of the target cities at or 

  
Figure 6 Offset similarity histograms.  These histograms show the weighted-average similarity from each target city to their city-to-city 
connected localities, offset by the average similarity of that target city to all known localities and further reduced by the average 
ambiguous-neighborhood standard deviation for the selected representation.  The comparisons in the left and center graphs show that 
the excess-based representations do better than the corresponding PHIL-based representations.  The comparison on the right shows 
that, by this measure, the excess-PHIL representation does better than the excess-term representation. 



above that level.  However, since we have not adjusted these 
two offset-similarity populations for differences in dynamic 
range, we cannot draw any substantive conclusion from this 
comparison.  Normalizing by the standard deviation will not 
help, since the excess-term vector similarities form a super-
Gaussian (heavy-tailed) distribution while the excess-PHIL 
vector similarities give a sub-Gaussian (weak-tailed) 
distribution. 

In order to further evaluate the relative performance of 
excess-PHIL and excess-term vectors, we look at the detailed 
recall behaviors of the two approaches.  We do this, for each 
target city, by looking for 10 cities that were most strongly 
associated with that target city in the city-to-city lists, within 
the list of known cities, as ordered by the query-analysis 
similarity.  For example, for Cambridge MA, we would look 
for Berkeley CA, Stanford CA, Brookline MA, Somerville 
MA, Boston MA, Albany CA, New York NY, Hanover NH, 
Ithaca NY, and Bethesda MD, based on the city-to-city lists.  

We would then count how many of these 10 cities were 
among the top 0.1% (10 of 8096) , 0.2% (20), 0.4% (30), 
0.5% (40), 0.7% (60), 1% (80), 1.5% (120), and 2% (160).  
Continuing with our Cambridge MA example, using the 
excess-term vectors to order our retrieval results, we see four 
of these top cities in the first 10 results (namely, Boston, 
Brookline, New York, and Bethesda), 5 cities in our first 20 
results (adding in Stanford), 6 cities in our first 30 results 
(adding in Somerville), 7 cities in our first 40 results (adding 
in Ithaca), 8 cities in our first 60 results (adding in Hanover), 
and 9 cities in our first 80 results (adding in Berkeley).  The 
tenth city (Albany) does not occur in our retrieval results 
until position 212, so it is not included in our reported 
results. 

When we do this more detailed evaluation of the most-
similar recall rates, the differences in recall rates between 
excess-PHIL and excess-term are not significant.  Excess-
PHIL processing gives, on average, 1.5% to 2% better recall 

  
Figure 7 Recall rates, by retrieval-set size, using excess-term features.  Each bar in the above graphs show the recall distribution, across 
target cities, in looking to find the top 10 city-to-city associations in the retrieval result provided by excess-term similarity sorting.  The 
colors correspond to different recall rates, from finding all 10 cities (top, red) to finding none (bottom, blue-black).  The x axis indicates 
the retrieval-set size, as a percentage of the full set of 8096 known cities, ranging from 0.1% up to 2%.  The left graph shows the results 
across all target cities.  The right graph shows the results on large cities (> 100K population). 
 
 

   
Figure 8 Recall rates, by retrieval-set size, using various baseline methods, for comparison.  These graphs provide baseline performance 
levels for the recall according to retrieval-set size.  The graph structure is the same as in Figure 7, except for the method used to select 
the retrieval set.  On the left, we use geographic distance to sort the known cities.  At center, we use the city population size (from 
largest to smallest) to sort the known cities.  On the right, we use the difference in population size compared to the target-city size (from 
closest in size to most different).  For all three of these graphs, we used the same optimistic namespace mapping as was described in 
Section II-c. 



than excess-term across the considered retrieval sizes (where 
recall of all 10 top cities corresponds to 100% recall).  
Excess-term does better than excess-PHIL on large cities 
while excess-PHIL does better on mid-sized and small cities.  
However, the standard deviation in these recall differences 
are on the order of 12% to 15% and none of these differences 
even approach statistical significance.  Based on this lack of 
significance, we only show the results of the excess-term 
vector for the remainder of this paper. 

Figure 7 shows the details of our recall results, across 
retrieval-set size, for all target cities.  The x axis is the 
retrieval set size.  The different colors in stacked bar graphs 
at each x position show how many of the sought-after 10 
cities were seen at that retrieval size and the size of each 
colored section show what percentage of the target-city set 
got that level of recall, at that retrieval size.  Returning to our 
Cambridge example, this city would be included in the “4” 
color region, at the 0.1% retrieval size (with higher recall 
than 79% of the other target cities at that retrieval size); in 
the “5” color region, at the 0.2% retrieval size (better than 
78% of the target cities); in the “6” color region at 0.4% 
recall (better than 81% of the target cities); in the “7” color 
region at 0.5% recall; and so on. 

We again need to provide a baseline result against which 
to compare.  While it is tempting to compare to random 
sampling without replacement, that comparison is too 
optimistic due to our namespace mapping process.  Instead, 
in Figure 8, we show three baseline orderings:  by distance, 
by population size, and by population difference.  For our 
distance ordering, for each target city, we sort all known 
cities according to their distance from the target.  This is 
based on the hypothesis that places that are near each other 
are most similar.  After we have done this initial sort, we 
repeat the same namespace mapping as was described in 
Section II-C, so the distance mapping can receive the same 
boost to its recall results.  Our second baseline ordering is by 
population size.  We sort all known cities once, according to 
their reported population size (largest to smallest).  We use 
this single ordering as a starting point for all target cities but 
allow it to be modified for the ambiguous names, again using 
the mapping described in Section II-C.  Our final baseline 
ordering is by population difference.  For each target city, we 
sort all known cities, according to their (absolute) population 
difference compared to that target, so that cities that are of 
similar size to the target will occur early in the list and cities 
that are much larger or smaller will occur late in the list.  We 
again use the namespace mapping from Section II-C. 

As can be seen by comparing Figures 7 and 8, the recall 
results for the excess-term-based sorting are much higher 
than what would be provided by any of our simple baseline 
methods.  Since the baseline methods enjoy the same 
optimistic namespace mapping as our excess-term results, 
our results are not due to that mapping.  In Figure 7, we can 
also see an improvement from the average target-city recall 
performance to that of the largest target-city recall. 

To gain a better understanding of our derived similarities, 
we look at the results from three well-known, mid-sized 
locations: Cambridge MA, Austin TX, and Redmond WA.  
Cambridge is the home of two prestigious universities (MIT 

and Harvard), as well as being a center for high-tech startups 
and defense contracting.  When we look at the top associated 
cities, the first three associated localities share some of these 
characteristics but most likely are listed due to geographic 
location: Boston MA, Brookline MA, and Waltham MA are 
all very close to Cambridge.  In addition to those nearby 
cities, we see associations that are best explained by 
character: Palo Alto CA has a high quality university 
(Stanford), as well as many high-tech companies, both start-
up (Facebook, VMware, etc) and established (Hewlett-
Packard, Xerox PARC, Fuji-Xerox Research).  There is a 
cluster of associated cities from the defense-contractor 
centers: specifically, Bethesda VA, Arlington VA, and Fort 
Myer VA.  The association with Irvine CA is may be due to 
its mix of academics (UC Irvine) and high tech (Broadcom).  
Bellevue WA is also closely associated, probably since it is 
near Microsoft.  

Similar types of associations can be seen for Redmond 
WA (Microsoft Headquarters).  Two nearby communities are 
most strongly associated: Seattle WA and Bellevue WA.  
There is a cluster of cities from the Boston area, which share 
the high-tech bias: namely, Cambridge MA, Waltham MA 
(with many high-tech start ups), and Lexington MA (with 
MIT Lincoln Labs).  The largest group of associated cities 
for Redmond is from the Silicon Valley area: Sunnyvale CA, 
San Jose CA, Mountain View CA, and San Francisco CA.  
In addition, Buffalo NY (with SUNY) and Oakland CA 
(with Berkeley) are associated with Redmond, probably 
based on their engineering schools. 

Austin TX shares many of the same characteristics and 
association but, in addition, shows a bias towards 
government centers, such as Frankfurt KY (state capital) and 
Washington DC.  The high-tech associations for Austin are 
less obvious than those of Cambridge and Redmond but 
probably account for its association with Norcross GA 
(Megatrends Corp) and San Bruno CA (YouTube).  Other 
associations to Austin included: geographic location (Mc 
Neil TX), defense contracting (Ellicott City MD, Crofton 
MD), and academics (Atlanta GA, for Georgia Tech as well 
as for many high-tech startups). 

VII. CONCLUSIONS 
In this paper, we have employed techniques that have 
previously been used to examine either single or small sets 
of users and extended the procedures to analyze the 
populations of more than 13 thousand cities across the U.S.   
Despite the diversity of people in cities, we are able to find 
signals in the aggregate query streams emanating from the 
cities and use them to determine similar cities that are not 
necessarily geographically close.   

The most important signal we used for our analysis, the 
excess score, was both simple and easy to compute.  
Intuitively, it measures the ‘surprise’ in the volume of a 
particular query.   This measure helps us overcome two 
important difficulties with the data.  First, every city has 
many queries for common terms; instead of simply 
eliminating these common terms (as is often done with stop-
list type approaches), the effect of these terms is reduced 



unless there is a reason to pay attention to the terms (i.e. they 
occur either more or less than expected in a city).   Second, 
the excess measure also provides a simple basis with which 
to normalize for the query volume of a city.   This was 
crucial, considering the wide range of population sizes and 
search engine usage in the cities examined. 

The results obtained by our system perform well even 
with small retrieval sets.   With only retrieving 160 cities 
(2% of the known cities), on average, we find 6 cities from 
the top-10 closest cities (as measured by the census-data-
based city-to-city dataset).    Other, intuitive heuristics, such 
as geographically closest 160 cities, or 160 cities with the 
closest sized population, performed significantly worse. 

VIII. FUTURE DIRECTIONS  
There are a number of future directions for exploration.  In 
terms of the algorithms, one of the first experiments to 
conduct is with weighted excess metrics.  Currently, each 
term is normalized such that its contribution is proportional 
to its deviation from its expected volume.   However, some 
terms may be more important than others – for example, if a 
term that was expected to account for a large percentage of a 
the query traffic didn’t (i.e. there was only 1/10th the number 
of expected queries of a popular term like “Twitter”), that 
may be more telling about the population than the drop of a 
less popular term (i.e. 1/10th the volume of the query “Pinto 
muffler”).  One simple method to incorporate an importance 
weighting is to multiply the excess score with the query’s 
expected percentage of traffic.   Experiments need to be 
conducted to see whether such a weighting translates into 
improved performance. 

In this paper, we attempted to find similar cities by 
looking at their query distributions.  Alternatively, we could 
also address the task of finding related queries by looking at 
their excess distributions across cities.   Even more 
interesting would be to combine the two analyses, so as to 
allow specialization of our city-similarity lists to coherent 
clusters of concept variations, such as weather or academic 
emphasis, without manual selection of the query dimensions. 

In this study, we created a ground-truth set from lists of 
similar cities on the web.  In the future, we will compare our 
performance directly to Census data.  By using the Census 
data, and creating multiple association lists from various 
segments of their data (for example the most similar cities 
based on household income, job type, ethnicity, etc), we can 
further understand which segments of their data corresponds 
closest to the similarity that is found through analyzing query 
logs.    

Perhaps most important to large scale adoption of this 
work, we need to measure how the similar-city lists found 
here correlate with the success and failure of content and 
advertising campaigns that have been launched in multiple 
cities.  Understanding this, first through historical log 
analysis and then through controlled trials, will be an 
important step towards understanding the extent to which the 
city-similarities can be used for helping content-creators and 
advertisers. 
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