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Abstract—1In this paper, we propose a method for detecting
and precisely segmenting repeated sections of broadcast streams.
This method allows advertisements to be removed and replaced
with new ads in redistributed television material. The detection
stage starts from acoustic matches and validates the hypothesized
matches using the visual channel. Finally, the precise segmenta-
tion uses fine-grain acoustic match profiles to determine start
and end-points. The approach is both efficient and robust to
broadcast noise and differences in broadcaster signals. Our final
result is nearly perfect, with better than 99% precision, at a
recall rate of 95% for repeated advertisements.

I. INTRODUCTION

When television material is redistributed by individual re-
quest, the original advertisements can be removed and replaced
with new ads that are more tightly targeted to the viewer.
This ad replacement increases the value to both distributor and
viewer. The new advertisements can be fresher, by removing
promotions for past events (including self-advertisement of
past program material), and can be selectively targeted, based
on the viewer’s interests and preferences.

However, information about the original broadcast ads and
their insertion points is rarely available at redistribution. This
forces consideration of how to efficiently and accurately detect
and segment advertising material out of the television stream.

Most previous approaches have focused on heuristics based
on common differences between advertising and program
material [1], [2], [3], such as cut rates, soundtrack volume, and
surrounding black frames. However, these approaches seldom
work in detecting self-advertisement of upcoming program
material.

Instead, we compare the re-purposed video to an automat-
ically created, continuously updated database of advertising
material. To create the advertising database, we first detect
repetitions across (and within) the monitored video streams.
We use fine-grain segmentation (Subsection II-C) to find the
exact endpoints for each advertising segment. We then add this
advertisement to the database, noting the detected endpoint
to the ad. When processing the re-purposed video to replace
embedded advertising, we can skip the fine-grain segmentation
step. Instead, we can simply use the noted advertisement end-
points, projected through the matching process back onto the
re-purposed video. With these endpoints on the re-purposed
video stream, we can replace the embedded advertisement with
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a new advertisement that is still timely and that matches the
viewers interests.

In this approach, the two difficult steps are (1) creating
a database of accurately segmented advertisements and (2)
selecting an approach to repetition detection that is efficient,
distinctive, and reliable. We create the advertising database by
continuously monitoring a large number of broadcast streams
and matching the streams against themselves and each other
in order to find repeated segments of the correct length for ad-
vertisement material. Since we use the same matching process
in creating our advertisement database as we ultimately will
use on our re-purposed video stream, we discuss this shared
matching techniques as part of our description of the creation
of the advertisement database.

While the basic repetition-based approach to detecting ad-
vertising is similar to the general approach taken by Gauch
et al. [4], there are a number of important distinctions. The
approach taken by Gauch et al. relies on video signatures only
for matching. Our approach is based primarily on audio signa-
tures, with video signatures used only to remove audio matches
of coincidental mimicry. Furthermore, Guach et al. start by
segmenting their video stream before detecting repetitions.
This may make the segmentation process more error prone.
We proceed in the opposite order, first detecting repetitions
and using these signals to determine the temporal extent of the
repeated segment. We believe that these two differences (the
matching features and the order of detection and segmentation)
lead to improved performance, compared to that reported by
Guach et al. [4].

For creating and updating the advertising database and for
detecting ads in re-purposed footage, our detection process
must be efficient; otherwise, this approach will not be practical
on the volume of data that is being processed. For remov-
ing and replacing ads in re-purposed footage, we need an
extremely low false-positive rate; otherwise, we may remove
program (non-ad) material. Finally, our segmentation must be
accurate at video-frame rates to avoid visual artifacts around
the replaced material.

In this paper, we propose a method that meets these crite-
ria, for detecting and segmenting advertisements from video
streams. We describe this approach in the next section. We
present our experimental results for each portion of the pro-
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Fig. 1: Overview of the detection, verification, and segmentation process: (a) Five-second audio queries from each monitored broadcast
stream are efficiently detected in other broadcast streams (and at other points in the same broadcast stream), using a highly discriminative
representation. (b) Once detected, the acoustic match is validated using the visual statistics. (c) A refinement process, using dynamic

programming, pinpoints the start and end frames of the repeated segment.

This process allows the advertisement database to be continuously

updated with new, segmented, advertisement material. The same matching/validation process (steps a and b) is used on the re-purposed video
footage, with the addition that the endpoints for replacing the ads in the re-purposed video footage can be inferred using the segmentation

found when inserting the advertisement into the database.

posed process in Section III and conclude with a discussion of
the scope, limitations, and future extensions of this application
area in Section IV.

II. PROPOSED METHOD

We use a three-stage approach to efficiently localize re-
peated content. First, we detect repetitions in the audio track
across all monitored streams (Figure [-a). We then validate
these candidate matches using a fast matching process on
very compact visual descriptors (Figure 1-b). Finally, we
find the starting and ending points of the repeated segments
(Figure 1-c). The detection stage finds acoustic matches across
all monitored streams. The validation stage only examines
the candidates found by the detection stage, making this
processing extremely fast and highly constrained. The last
stage segments each advertisement from the monitored streams
using the fine-grain acoustic match profiles to determine the
starting and ending points. These segmented ads are placed in
the advertising database for subsequent use in removing ads
(by matching) from re-purposed footage.

We use an acoustic matching method proposed by Ke
et al. [5] as the starting point for our first-stage detection
process. We review this method in Section II-A. While the
acoustic matching is both efficient and robust, it generates false
matches, due to silence and reused music within television pro-
grams. We avoid accepting these incorrect matches by using
a computationally efficient visual check on the hypothesized
matches, as described in Section II-B. The accepted matches
are then extended and accurately segmented using dynamic
programming, as described in Section II-C.

A. Audio-Repetition Detection

The most difficult step in creating an advertisement database
from monitored broadcasts is determining, accurately and

efficiently, what portions of the monitored streams are adver-
tisements. We include in this set of ads “self-advertisements”
(e.g., for upcoming programming). These ads for upcom-
ing installments typically cannot be detected using standard
heuristics [2], [3] (duration, black frames, cut rate, volume).

This leads us to use repetition detection. When material
in any monitored video stream is found elsewhere within
the monitored set, the matching material is segmented from
the surrounding (non-matching) footage and is considered for
insertion into the advertisement database. In this way, we
continuously update the advertising database, ensuring that we
will ultimately be able to detect even highly time-sensitive
advertisements from the re-purposed footage.

In order to handle the large amount of data generated by
continuously monitoring multiple broadcasts, our detection
process must be computationally efficient. To achieve this ef-
ficiency, we use acoustic matching to detect potential matches
and use visual matching only to validate those acoustic
matches. Acoustic matching is more computationally efficient
than visual matching due to the lower complexity decoders,
lower data rates and lower complexity discriminative-feature
filters. We adapted the music-identification system, proposed
by Ke et al. [5] to provide these acoustic matches.

We start with one of the monitored broadcast streams and
use it as a sequence of probes into the full set of monitored
broadcast streams (Figure 1-a). We split this probe stream
into short (5-second) non-overlapping snippets, and attempt
to find matching snippets in other portions of the monitored
broadcasts. Because of noise in the signal (both in the audio
and video channels), exact matching does not work, even
within a single broadcast. This problem is exacerbated when
attempting matches across the many monitored broadcast
channels.

To match segments in broadcasts, we start with the music-



identification system proposed by Ke et al. [5]. This sys-
tem computes a spectrogram on 33 logarithmically-spaced
frequency bands, using 0.372-second slice windows at 11.6-
ms increments. The spectrogram is then filtered to compute
32 simple first- and second-order differences at different
scales across time and frequency. This filtering is calculated
efficiently using the integral image technique suggested by [6].
The filter outputs are each thresholded so that only one bit
is retained from each filter at each 11.6-ms time step. Ke et
al. [5] used a powerful machine learning technique, called
boosting, to select these filters and thresholds that provide
the 32-bit descriptions. During the training phase, boosting
uses the positive (distorted but matching) and negative (not-
matching) labeled pairs to select the combination of filters and
thresholds that jointly create a highly discriminative yet noise-
robust statistic. The interested reader is referred to Ke et al. [5]
for more details.

To use this for efficient advertisement detection, we de-
compose these sequences of 32-bit identifying statistics into
non-overlapping 5-second-long query snippets. Our snippet
length is empirically selected to be long enough to avoid
excessive false matching, as may be found from coincidental
mimicry within short time windows. The snippet length is also
chosen to be short enough to be less than % of the shortest-
expected advertising segment. This allows us to query using
non-overlapping snippets and still be assured that at least
one snippet will lie completely with the boundaries of each
broadcast-stream advertisement.

Within each 5-second query, we separately use each 32-
bit descriptor from the “current” monitored stream to identify
“offset candidates” in other streams or in other portions of
the same stream. The offset candidates describe the similar
portions of the current and matching streams using (1) the
starting time of the current query snippet, (2) the time offset
from the start of the current query snippet to the start of
the matched portion of the other stream, and (3) the time
offset from those starting times to the current 32-bit descriptor
time. We then combine self-consistent offset candidates (that
is, candidates that share the same query snippet (item 1) and
that differ only slightly in matching offset (item 2)) using a
Markov model of match-mismatch transitions [5]. The final
result is a list of audio matches between each query snippet
and the remainder of the monitored broadcasts.

Although this approach provides accurate matching of audio
segments, similar sounding music often occurs in different
programs (e.g., the suspense music during “Harry Potter” and
some soap operas), resulting in spurious matches. Additionally,
silence periods (between segments or within a suspenseful
scene) often provide incorrect matches. The visual channel
provides an easy method to eliminate these spurious matches,
as described in Section II-B.

B. Visual Verification of Audio Matches

Television contains broadcast segments that are not locally
distinguishable using only audio. These include theme music
segments, stock music segments (used to set the emotional

tone at low cost), and silence periods (both within suspenseful
segments of a program and between segments).

We use a simple procedure to verify that segments which
contain matching audio tracks are also visually similar. Al-
though there are many ways of determining visual similarity,
the requirements for our task are significantly reduced from
the task of general visual matching. We are only looking for
exact (to within systematic transmitter and receiver distortions)
matches. Furthermore, the audio matching already finds only
matches that are acoustically similar (again, to within sys-
tematic transmitter and receiver distortions). Since an audio
match has already been made, the hypothesized match is likely
to be one of two cases: (1) different broadcast of the same
video clip or (2) ‘stock’-background music that is used in a
variety of scenarios. In the latter case, the case that we need
to eliminate, we observed little evidence that the visual signal
associated with the same background sounds will be similar.
For example, Figure 2 shows a sequence that matched in the
audio track, but contained very different visual signals.

Given this simplified task, the visual matching can be
easily implemented, not requiring the complexity (and asso-
ciated computation) of more sophisticated image matching
techniques [7]. Each frame in the two candidate sequences
is reduced to a 5 x 5 24-bit RGB image. The only pre-
processing of the images is subtraction, from each color
band, of the overall mean of the band; this helps eliminate
intensity and other systematic transmitter/receiver distortions.
We use the Ly-norm distance metric on these reduced visual
representations.

We examined the verification performance using four al-
ternative methods for keyframe-sequence matching: with and
without replacement and with and without strict temporal
ordering. Matching with replacement allows for a larger de-
gree of audio-visual desynchronization within the potential
matches. Matching without temporal constraints is more robust
to partial matches, where some number of keyframes do not
have a good visual match. These results are given in the next
section.

We found that sampling the visual match 3 times a second
taken from the middle 80% of the detected match was suffi-
cient for this visual verification of the acoustic match. Using
only the center 80% of the match helps reduce the sensitivity
to partial matches, where the candidate match straddled the
segment boundary. Temporal subsampling to only 3 frames
per second allows us to reduce the temporal resolution (and
therefore size) of that visual database. In the visual statistics
database, we only include the signature data from every tenth
frame. When testing a match hypothesis that was generated
from the acoustics, we then pull out the frames from the to-
be-segmented stream that, using the match offset, will line up
with those frame times in the database streams.

C. Segment recovery

Those matches that pass both acoustic and visual consis-
tency checks are hypothesized as being parts of advertise-
ments. However, there still are two limitations in our snippet



a. match between different programs with similar music

b. match different positions within a single program

Fig. 2: Two sequences that matched acoustically but not visually. These incorrect matches are removed by the visual verification.

matches: (1) the individual matches may over-segment an
advertisement sequence and (2) the match boundaries will only
coarsely locate the advertisement boundary.

We correct both of these shortcomings by endpoint detection
on the temporal profiles created by combining the fine-grain
acoustic match confidences across all matching pairs. For each
5-second snippet from the current probe video, we collect
a list of all the times/channels to which it matched, both
acoustically and visually. We force this multi-way match to
share the same start and end temporal extent, as measured
from the center of the snippet and its matches. A single profile
of fine-grain match scores for the full list is created by, at each
11-ms frame, using the minimum match similarity generated
by the match pairs within the current list. This typically
increases the accuracy of segmentation when the transitions
to or from the ad are silent or are theme music. The increased
accuracy is seen whenever the monitored footage has some
other occurrence of the same ad with a different surrounding
context.

We use forced Viterbi [8] starting from the center of the
snippet match and running forward in time to find the end point
of the ad segment. We use it starting from the center of the
snippet match and running backward in time to find the start
point of the segment. In each case, we use a two-state first-
order Markov model and find the start/end point by finding the
optimal transition point from “matching” to “not matching”,
given the minimum-similarity profile. The Viterbi decoder is
allowed to run for 120 seconds forward (or backward) in
time from the match center. At each time step, the decoder
tracks two probabilities and one “decoding variable”. The first
probability is that the profile from the center point to that
time step matches. The second is the probability of the most-
likely path from matching to not matching, assuming that the
current time step does not match. The decoding variable gives
the maximum-likelihood transition point under this second
scenario.

By running the Viterbi decoder forward (or backward) for
120 seconds, starting from the match certainty at the center, we
can examine the relative probabilities of the match still being
valid or invalid, after 120 seconds. If the full match profile
(from the detected starting point to the detected ending point)
extends for 2 minutes or more, it is most likely a repeated
program. Since we are unlikely to be matching advertisements

over such a long period, we can safely remove that over-
long match from consideration. Otherwise, we use the location
indicated by the decoding variable as our transition point and
are assured of using the optimal end (start) point for our
segments. Finally, if the duration given by combining the
optimal start and end points is too short (less than 8 seconds),
we also discarded the match list as being simple coincidences.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we provide a quantitative evaluation of our
advertisement identification system. For the results reported
in this section, we ran a series of experiments using 4 days
of video footage. The footage was captured from three days
of one broadcast station and one day from a different station.
We jack-knifed this data: whenever we used a query to probe
the database, we removed the minute that contained that query
audio from consideration. In this way, we were able to test 4
days of queries against 4 days (minus one minute) of data.

We hand labeled the 4 days of video, marking the repeated
material. This included most advertisements (1348 minutes
worth), but omitted the 12.5% of the advertisements that were
aired only once during this four-day sample. In addition to this
repeated advertisement material, our video included 487 min-
utes of repeated programs, such as repeated news programs or
repeated segments within a program (e.g., repeated showings
of the same footage on a home-video rating program).

For the results reported in Subsections III-A (acoustic
matching) and III-B (visual verification), the performance
statistics are for the detecting any type of repeated material,
both advertising and main programming: missed matches
between repeated main-program material are counted as false
negatives and correct matches on these regions are counted
as true positives. For the results reported in Subsection III-
C (segment recovery), the performance statistics are for de-
tecting repeated advertising material only: for this final step,
any program-material matches that remain after the segment-
recovery process are counted as false positives.

A. Acoustic-Matching Results

Our results on our acoustic matching step, using non-
overlapping 5-second queries is shown in the top row of Ta-
ble I. Since no effort was made to “pre-align” the query bound-
aries with content boundaries, about % of the queries strad-
dled match-segment boundaries. For these straddle-queries,



TABLE I: Results from each stage of our advertisement detection. Only the performance listed as our final results have a visible effect
on the re-purposed video stream. However, the quality of the acoustic-matching and visual-verification results have a direct effect on the
computational efficiency of the final system. For example, if the acoustic-matching stage generates many false matches (that are removed
by one of the later stages), the computational load for the visual verification stage goes up.

Stage and detection target False-positive rate  False-negative rate  Precision ~ Recall
Acoustic-matching stage all repeated material 6.4% 6.3% 87% 94%
After visual verification all repeated material 3.7-3.9% 6.6-6.8% 92% 93%
Final results, after fine-grain segmentation repeated advertising only < 0.1% 5.4% > 99% 95%
False-positive rate = FP/(TN+FP). False-negative rate = FN/(TP+FN). Precision = TP/(TP+FP). Recall = TN/(TP+FN).
we counted each match or missing match as being correct associated false-positive rates were all within %% of one

or not based on what type of content the majority of the
query covered. That is, if the query contained 3 seconds of
repeated material and 2 seconds of non-repeated material,
then the ground truth for that query was “repeated” and vice
versa. As shown in Table I, our precision (the fraction correct
from the material detected as repeating) is 87% and the recall
(the fraction correct from the material actually repeating) is
94%, even with these difficult boundary-straddling snippets.
Many of the false positives and false negatives (27% and
42%, respectively) were on these boundary cases. These false-
positive and false-negative rates are 60% and 150% higher than
seen on the non-boundary snippets, respectively.

On the non-boundary cases, most of the false positives were
due to silences within the television audio stream. Some false
positives were also seen on segments that had stock music
without voice overs that were used in different television
programs. On the non-boundary cases, the false negatives
seemed to be due to differences in volume normalization.
These were seen near (but not straddling) segment boundaries
when the program material just before or after the match on
the two streams were set to radically different sound levels.

B. Visual-Verification Results

As can be seen in Table I, the performance of our vi-
sual verification step was nearly identical under all four of
the sequence-matching approaches (with or without temporal
ordering and with or without replacement). In all cases, the
false-positive rate dropped to between 3.7% and 3.9% and the
false-negative rate rose slightly to between 6.6% and 6.8%,
giving a precision of 92% and a recall of 93%. This is a
relative improvement in the precision of 40%, associated with
a relative degradation in recall rate of 10%.

As mentioned above, the different matching metrics did
not provide significant differences in performance. All four
metrics correctly excluded incorrect matches that were across
unrelated program material, such as shown in Figure 2-a.
The two metrics with temporal constraints performed better
on segments that were from different times within the same
program, such as might occur during the beginning and ending
credits of a news program (Figure 2-b) but were more prone
to incorrectly discarding matches that included small amounts
of unrelated material, such as occurs at ad/ad or ad/program
boundaries. When thresholds were selected to give equal recall
rates across the difference sequence-matching approaches, the

another.

Due to the nearly equal performance, we selected our
sequence-matching technique according to computational load.
Matching with temporal constraints and without replacement
takes the least computation, since there is only one possible
mapping from one sequence to the other. All of the other
criteria require comparison of alternative pairings across the
two sequences.

C. Segment Recovery

We used the approach described in Section II-C to recover
advertising segments. Since we discard match profiles that
are longer than 120 seconds, we collected our performance
statistics on the ad repetitions only: the repetitions associated
program reruns were all long enough that we discarded them
using this test.

As can be seen from Table I, all performance measures
improved with fine-grain segmentation. The false-positive rate
fell by 97%, relative to that seen after that visual-verification
stage. At the same time, the false-negative rate fell, relative
to that seen after that visual-verification stage, by 20%. The
corresponding improvements in precision and recall were 98%
and 32%, relative to those seen after the visual-verification
stage. The improvement in the precision was due to the use
of the minimum similarity profiles to determine repetition.
The improvement in the recall rate was due to the match
profile from neighboring matches correctly extending across
previously-missed matches on straddled segment (ad/ad or
ad/program) boundaries. Note that this improvement recovers
the loss in recall introduced by the visual-verification stage
and even improves the recall to better than seen on the original
acoustic-matching results.

Our results improve significantly on those reported previ-
ously. For commercial-detection, Hua et al. [1] report their
precision and recall as 92% on a 10 %-hour database. Gauch
et al. [4] reports combined precision and recall, Fo. The
formula suggested by Gauch et al. [4] is % where P and
R are precision and recall. For this metric, for commercial
detection, Gauch reports Fo = 95% on a 72-hour database.'
For a similar combination of precision and recall, we achieve
a quality metric of 97% on a 96-hour database. By this metric,
our results provides a relative improvement of 40-62% even

!Since Hua et al. [1] report equal precision-recall results of 92%, their
Feo = 92%.
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Fig. 3: Segmentation result for the start of an advertisement across 3 broadcast streams. Each row shows the frames from a different broadcast
stream. The figure shows full video-rate time resolution (all video frames are shown). The detected endpoint was indicated using Viterbi
decoding of the optimal transition point, given a temporal profile of the minimum match similarity on each 11-second audio frame period.
Note the frame accuracy of ad-boundary detection. Also note that the transition does not always include a black frame, making that common

heuristic less reliable in detection of advertising boundaries.

on a database that is larger than the previously reported test
sets.

Our detected segment boundaries are also very accurate.
Figure 3 shows an example of our segmentation results, on
a set of aligned repetitions of an ad. The use of minimum
similarity measures allows the correct transition point to be
detected, even when the previous segments are faded down
before the start of the new segment. When we replayed the
video with the advertising segments removed, we saw no
flashes or visual glitches. There was the perception of an
acoustic pops, probably due to the cut-induced sudden change
in the background levels. These acoustic artifacts could be
avoided by cross fading instead of splicing the audio across
the ad removals.

IV. CONCLUSIONS AND FUTURE WORK

We have presented an approach to detecting and segment-
ing advertisements in re-purposed video material, allowing
fresher or specifically targeted ads to be put in the place
of the original material. The approach that we have taken
was selected for computational efficiency and accuracy. The
acoustic matching process can use hash tables keyed on the
frame descriptors to provide the initial offset hypotheses.
Only after these hypotheses are collected is the overhead of
the visual decompression and matching incurred. Since the
acoustic matching provides strong support for a specific match
offset, the visual matching does not need to be tuned for
discriminating between neighboring frames (which is difficult
due to temporal continuity in the video). Instead the visual
matching need only test for clear mismatches, such as occur
when stock music is reused.

Once the original advertisements are located (and removed),
new (potentially targeted) ads can be put into their place,
making the advertisements more interesting to the viewer and
more valuable to the advertiser. By using the original ad
locations for the new ads, we avoid inserting ads at arbitrary
locations in the program content. This ability to remove stale

ads and replace them with targeted, new ads may be a crucial
step in ensuring the economic viability of alternative TV-
content distribution models.

There are numerous possibilities for extending this work.
Foremost is using this in conjunction with a full advertisement-
replacement system, and determining not only the technical
limitations when employed on a large scale, but also end-user
satisfaction. Secondly, deployment on a large scale allows us to
build a database of advertisements from which we can build
more intelligent classifiers, for example to determine broad
interest/topic-categories, that may help us determine which
new advertisements to insert. Repeated-occurrence statistics
will also give the ability to autonomously monitor and an-
alyze advertiser trends, including spend and breadth, across
broadcast channels and geographies.
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