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ABSTRACT

This report summarizes our research on implementing a compressed memory in com-
puter systems. The basic premise is that the throughput for applications whose
working set size does not fit in main memory degrades significantly due to an in-
crease in the number of page faults. Hence we propose compressing memory pages
that need to be paged out and storing them in memory. This hides the large latencies
associated with a disk access, since the page has to be merely uncompressed when a
page fault occurs. Our implementation is in the form of a device driver for Linux.
We first evaluate a number of compression algorithms for use in the driver. We then
show results with some applications from the SPEC 2000 CPU benchmark suite and
a computing kernel. It is seen that speed-ups ranging from 5 % to 250 % can be
obtained, depending on the application behavior.

1 Introduction

This paper summarizes our research on implementing a compressed memory in com-
puter systems. Due to ever increasing size of application programs, modern operating
systems use the concept of virtual memory to extend the visible size of the real ran-
dom access memory (RAM) by backing it with a region on a permanent storage device
(swap file or device) [1]. This process also allows multitasking systems to run multiple
time-sliced processes on the machine. An active process can be given access to the
complete virtual address space of the processor. Idle processes can be swapped out
to disk, and kept ready to run when their turn arrives again. The address space is
divided into page frames. A translation mechanism is used to convert the virtual ad-
dress issued by a running process to the physical page that contains the instructions
or data required by the process. When the system runs low on physical pages, pages
that have not been used in the recent past can be written to the swap device. The
newly available page frames can now be supplied to active processes.

When the page frame on the swap device is required at a later time by a process,
a page fault occurs and the data has to be fetched explicitly from the swap device.
The problem is that the throughput for applications whose working set size does
not fit in main memory degrades significantly due to an increase in the number of
page faults. Disk access latencies are of the order of tens of milliseconds, which is
much larger than memory access time which are of the order of tens or hundreds of
nanoseconds. Hence many researchers have proposed compressing memory pages in
preference to swapping them out to disk [2, 3, 4, 5, 6]. This hides the large latencies
associated with a disk access, since the page has to be merely uncompressed when a
page fault occurs. The compressed memory system can be implemented in multiple
ways, including software approaches, such as modifications of the operating system
kernel, as well as hardware implementations, for example using compressed cache



lines. The former approach requires access to kernel source code and may not be
easily ported across different operating systems. A hardware implementation adds to
the cost of a machine. If the approach uses an enhanced memory controller, it may
only be suitable for new machines.

Our system consists of a loadable device driver (currently for Linux). This approach
is readily portable to other operating systems like WindowsN'T, Windows 2000 and
HP-UX. Another advantage of our system is that the driver can simply be unloaded
for those applications that do not benefit from memory compression. This can be
done on a running system, and does not require a shutdown. We have evaluated the
performance of our system with some of the larger applications from the SPEC 2000
CPU benchmark suite and a computational kernel. It is seen that for these appli-
cations, speed-ups from 5 % to 250 % can be obtained when compared to execution
without memory compression.

The rest of this report is organized as follows. Section 2 explains the architecture of
the memory compression scheme. Section 3 describes the actual implementation of
the driver. The selection of the compression algorithm is discussed in Section 4. Our
experimental results are shown in Section 5. Section 6 reviews related research in this
field. We conclude with some ideas for future work in Section 7.

2 Compressed Memory Architecture

In order to understand the operation of the compressed memory we briefly review the
standard paging operation of a system. As memory pressure builds up, the system
paging daemon starts to move pages out to the swap device to maintain a pool of free
pages in memory, as shown in Figure 1.

At a later time, if the page that was written to disk is accessed, it has to be explicitly
fetched from the swap device and put into a free physical page frame. This results in
a page-fault and causes a page-in operation as shown in Figure 2.

This disk access is multiple orders of magnitude slower than direct memory access ie.
tens of milliseconds for disk accesses and tens or hundreds of nanoseconds for access
to memory. The operating system can try to hide the latency of this disk access
by switching to another runnable process, or by aggressively prefetching pages from
disk. In many environments, such as engineering workstations dedicated to one main
task (EDA/CAD/CAM), there may not be another process that can be run to hide
disk access latencies. On the other hand, prefetching of pages from disk will work
perfectly only if one can exactly predict the page reference pattern of the application.
This is not possible or prohibitively expensive in terms of computational resources for
the general case. Swap daemons do try to capitalize on the locality of reference that
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most application programs exhibit by clustering page-ins. However, our experimental
results show that there is still considerable room for performance improvement via
memory compression.

The idea of memory compression is to hide the disk latencies by storing swapped out
page frames in a compressed form, but still in physical memory. On a subsequent
page fault, the page can be quickly decompressed and supplied to the application
program. The physical memory is divided into two parts, uncompressed memory and
compressed memory. The uncompressed memory caches frequently used pages from
the compressed memory. The compressed memory in turn caches pages from the
swap device. This part of the memory is managed by a kernel device driver. Detailed
operation of the system is described in the next section.

3 Implementation Details

The actual implementation of the compressed memory system is in the form of a load-
able device driver module. This module provides support for compressed in-memory
caching of block devices. The main benefit from it comes when it is used on swap
devices, but it can be used on filesystem devices as well. In the Linux implementa-
tion the module replaces the ’linear’ personality of the Multiple Device Driver. The
Multiple Device Driver is a block device driver that sits on top of other block de-
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Figure 2: Page Fault on access to Page Frame on Swap Device

vices and provides additional functionality, such as disk concatenation and various
levels of RAID. To add a new functionality, modules called ” personalities” are used;
examples of personalities are 'raid0’, ’raidl’ and ’raid5’. Personality ’linear’ allows
several block devices to be logically concatenated and presented to the system as one,
larger, device. We could have added a new personality for our caching compressed
memory; however, the Multiple Device Driver, which is a Linux kernel module, has
a hard-coded list of all personalities and adding a new one requires changes in the
code. Instead, we completely replace one of the personalities with ours, which results
in a fully stand-alone package that does not require changes to the rest of the kernel
code.

The system architecture consists of the device driver, the driver memory for caching
compressed pages, a swap device, and the regular uncompressed memory, as shown in
Figure 3.The device driver appears as a regular block device to the system once it is
loaded. This block device is formatted as a swap partition and added as a swapping
device to the system. When the operating system tries to swap out a page, it will
initiate a write on this special swap device. The device driver intercepts the page
and compresses it. It then copies the compressed page to the previously reserved
memory area. When the process tries to access the page sometime in the future, the
device driver intercepts the read request to the swap device and decompresses the
page. Decompression of a page is much faster than reading data from a disk. This
translates into reduced total execution time for the application.

5



Driver PR
Memory S e
L--"" | !
| |
Central i Device |
Processing - ' Driver | |
Unit : | | !
Uncompressed ! | ;
Cache p R 5 ' Swap Device '
Memory 7 N ! !

Figure 3: Architecture of Memory Compression System

The algorithm used is as shown in Figure 4. The device driver initially allocates some
kernel memory, based on load time parameters. This memory is carved into fixed size
buckets (256 Bytes in the current implementation). The buckets are chained together
into a linked list, this forms the initial free list. The size of swap file that this device
represents is also specified at load time. This value is used to create a page table,
with one entry per swap page. The page table entry includes a pointer to the start of
the bucket chain in which the compressed page is held and the size of the compressed

page.

The amount of memory required by the compressed page depends on the contents of
the page as well as the memory compression algorithm. In some cases the compressed
data can actually be larger due to some constant data overheads from the compression
algorithm. For such cases we use a dummy compression algorithm, which only makes
a copy of the page. The memory compression algorithm used for a page is encoded in
the page table entry. If the compression achieved for a large number of pages is very
poor, it is possible that there is not enough memory reserved to store them. At that
time, the driver should not allocate more memory, since the system is already under
severe memory pressure, and it could lead to instability. Hence the driver starts to
write compressed pages to disk, using a history of accesses to determine which are
the less frequently used pages. A special entry in the page table indicates whether
the page is on the disk. Pages on disk are stored in an uncompressed form. If a later
access to a page misses in the compression cache, the page can be supplied from the
disk without having to decompress it.

The software solution makes the implementation very flexible. Additional and im-
proved compression algorithms can easily be added. It is also possible to tune the

algorithms that allocate memory buckets and write back pages to disk based on appli-
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Figure 4: Flowchart of Memory Compression Algorithm

cation behavior. Unlike prior attempts, our system does not require modifications to
the operating system kernel, nor does it require hardware support from the computer.
This of course does not preclude the use of hardware compression accelerators for fur-
ther improving the performance. An additional advantage of our system is that the
driver can be dynamically loaded and unloaded. Memory compression schemes can
lead to poor performance in case of applications that compress substantially worse
than the assumed 2x ratio. Since the overall memory accessible to the application
is reduced by the factor reserved for storing compressed pages, it results in more
page faults. If the faults have to access the disk due to poor compression ratios,
the application runs slower than if there were no memory reserved for compression.
It may even be possible that the very act of reserving memory for the compressed
pages forces the working set of pages out of the main memory into the disk. In such
a case, one would see a considerable slowdown in the application. However in our
approach, the driver can simply be unloaded, so that all the memory is available to
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the operating system for management. Thus the compression cache can be loaded
and unloaded without requiring system shutdown.

4 Compression Algorithm Selection

The first step in evaluating the effect of memory compression was to select a suitable
compression algorithm. These tests were carried out on an HP Kayak XA with a
500 MHz Pentium III processor and 128 MBytes of memory. The operating system is
Linux 2.2.16, based on the S.u.S.E 7.0 distribution. The memory compression algo-
rithms include 20ib, [zo, lzrw, WKdm, and WK4z4. Details about the algorithms are
available in [4]. All the compression algorithms were compiled without any compiler
optimization. The intent was to capture the the intrinsic quality of the compression
algorithm, without considering coding or compiler characteristics.

The input data sets were obtained by taking regular snap-shots of the swap file
while running a large visualization application. The interval between captures was
10 minutes. The application used was a computer vision program that does 3D
scene-reconstruction from multiple 2D images [7]. The data in the snap-shot was
then compressed with the various algorithms using 4096 byte chunks as input. This
corresponds to the page size of the system. Each compression speed data point is
obtained by averaging the time to compress that chunk over 10 runs. The compression
ratio, as well as the decompression speed for 4096 byte pages, are similarly obtained
from multiple runs.

Figures 5 - 7, show the histograms for the compression ratio, the compression speed
and the decompression speed. The histograms are obtained by counting the data
points in 100 buckets, which are evenly spaced between the logarithms of the minimum
and maximum values of each set. Note that the axes are plotted on a logarithmic
scale.

It is clearly seen from Figure 5 that most pages compress by a factor of about 2,
irrespective of the algorithm used. Only a few pages are found to lie in the extremes
of having very high or very low compression ratios. It is seen that zlib has the best
compression ratio, followed by WK/z/ and WKdm.

However, the compression ratio alone is not the only criterion for selection. During a
page fault, the decompression of the page lies in the critical path, and thus its speed
is significant. As seen in the decompression speed curve in Figure 6, there is a much
greater variance between various algorithms. Clearly, zlib is the slowest algorithm.

Finally, page compression typically occurs only when a page is swapped out. The
compression speed curve is shown in Figure 7. In this case 2lib is an order of magnitude
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Figure 5: Histogram of Compression Ratios for different algorithms

slower than the other algorithms. This is likely due to the complexity of the algorithm,
ie. the additional cost of the Huffman encoding. Based on these results, WKdm and
WK/x/ are the best compromise in terms of compression ratio, decompression speed,
and compression speed.

5 Experimental Results

The compression scheme was evaluated on an HP Kayak XU800 with dual 733 MHz
Pentium IIT processors (256K full speed L2 cache) and 256 MBytes of RDRAM.
The swap device was a 9.1GB SCSI Ultra3 10krpm Hard Disk Drive. The operating
system was Linux 2.2.16 from the SuSE 7.0 distribution. The memory compression
algorithm used is WK4x4 which is described in detail in [4].

The applications tested consist of several programs from the SPEC 2000 CPU bench-
mark suite. The resident sizes obtained by running top(1) on a system with 256 MBytes
are shown in Table 1. Note that some programs have a fairly large fluctuation in res-
ident size during their execution and thus the sizes are shown as ranges.

The values for the integer benchmarks were also reported in [8] and agree well with
those shown here. Since our objective was to run applications with moderate to large
memory footprints we restricted further investigations to wupwise, swim, applu,
and apsi from the floating point benchmarks, and gzip, gap, vortex, and bzip2
from the integer benchmarks.
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Integer Floating Point

Program MBytes | Program | MBytes

gzip 180 || wupwise 176

vpr 235 swim 190

gce 731 grid 95

mcf 11 -179 applu 180

crafty 2 mesa 8

parser 26 art 3

eon 1 equake 41

perlbmk 1-107 amp 13

gap 192 apsi 191
vortex | 48 — 122
bzip2 | 179 — 184
twowolf 2

Table 1: Resident Size of SPEC 2000 Benchmark Programs (256 MBytes System)

Most UNIX like systems including Linux will try to make use of all available memory
by dividing it between the kernel data structures, application requirements and space
for buffering files. This means that, given sufficient memory, even pages that are used
rarely by an application will continue to reside in memory till the program terminates.
Hence we also measured the dynamic working set sizes for these programs by executing
them on the same machine, but with varying memory sizes, from 64 MBytes to
256 MBytes. Figure 8 shows that the actual dynamic working set size for applications
like bzip2, gzip, and vortex is less than 64 MBytes and that these programs are not
likely to benefit from memory compression in systems with more than 128 MBytes
of memory. Due to the strict reporting requirements of the SPEC consortium, we
cannot show the actual execution times. Instead, we have normalized the results to
the execution time on a machine with 256 MBytes of memory. Since swim had a large
amount of paging in the 128 MByte configuration and did not complete successfully
even after a very long time, we did not use this program any further.

Program Total | Compressed
(MBytes) (MBytes)

wupwise 96 16
apsi 160 48

gzip 64 8

gap 160 32
bzip2 64 16

Table 2: Memory Configuration for SPEC 2000 Evaluation
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Figure 8: Effect of varying Memory Size on several SPEC 2000 Benchmarks

The programs that we tested for performance improvements had different working set
sizes. The machine configuration for the speedup tests for each program is as shown
in Table 2. The amount of compressed memory required to give us the best results is
also shown in the table. Figure 9 shows the overall speedup that was obtained with
each program. The execution time in this case is normalized to the execution time
on a machine with the same memory size, but no memory reserved for compression.
It can be seen that for these programs we get speedups ranging from 5 % for bzip2
to 75 % for apsi when compared to the uncompressed case. The optimal fraction
of physical memory that should be reserved for compression lies between 10 % and
30 % for our set of experiments.

Since the SPEC 2000 benchmarks have a fixed memory footprint, we also tested
our system with a scalable computational kernel, Successive Over Relaxation. This
program performs a nearest neighbor averaging algorithm on a rectangular matrix
and is typically used while solving partial differential equations. To keep the elapsed
time tractable, the machine size was reduced to 64 MBytes. The results are shown in
Figure 10. The execution times are again normalized to the time when run without
memory compression. The results confirm that the optimal fraction of memory that
should be compressed lies around 25 %. The constant overhead of about 14 MBytes
(ie. about 20 % of the memory in this machine) imposed by kernel data structures
cause some non-intuitive behavior. For example, once 75 % of the memory is reserved
for compression, even a program that requires as little as 20 % of the memory incurs
a very large number of page faults. Consequently this leads to an overall slowdown in
the application. Similarly, speedups are seen when the required size of the program
equals the total physical memory of the machine and 6.25 % to 50 % of the memory is
compressed. The kernel overhead causes the program to page severely when it requires
64 MBytes in the noncompressed case. When memory compression is introduced, the
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paged out frames fit in the compressed memory, and the majority of accesses to the
swap disk are saved.
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Figure 10: Scaling the Successive Over Relaxation Benchmark (64 MBytes machine)

6 Related Research

An early study of using compression in main memory targeted mobile computers with
limited memory and network bandwidth, as well as small or no local disks [2]. The
compression scheme was implemented by extending the dynamic trading of memory
between the virtual memory system and the disk buffer cache in the Sprite Operating
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System. The compressed memory region was introduced as a third consumer of
memory. The results were poor due to low compression ratio (using the LZRW1 [9]
compression algorithm) and restricted I/O, which only allowed transfers in 4k blocks.
Though the system allowed dynamic adjustment of the size of compression memory,
some of the application with compression ratios less than 2:1 still showed a slow-down.
On the other hand, applications which compressed about 3:1 showed improvements
by factors 1.6 — 2. The author proposed that a greater disparity between processor
speed and bandwidth would be required to show speedups. Our implementation does
not require modifications to the operating system. We also use a fixed fraction of
reserved memory which reduces the complexity of the implementation.

A model of main memory with data compression was developed in [3]. Standard
memory hierarchy modeling techniques were extended to include the effect of com-
pressed memory. The model was then evaluated with memory traces, assuming soft-
ware, hardware and no compression. The results showed that software compression
alone could give a system improvement of a factor of two, while hardware assisted
compression improved performance by up to an order of magnitude. However, the
model optimistically assumed a constant compression ratio of 2:1. The authors fur-
ther advocate that hardware memory compression alone can provide the compression
bandwidth for across the board improvements in the system. They quote a figure of
100 MBytes/s for an FPGA based implementation of a hardware compressor [10]. Our
own results show that with modern high performance processors, similar compression
and decompression speeds can be obtained purely in software.

Novel compression algorithms suited for compressing in-memory data representations
were introduced in [4]. These modified Ziv-Lempel algorithms were shown to be very
fast and symmetric in terms of the time taken for compression and decompression.
They use a small 64 byte dictionary and operate on 32 bit words (unlike typical
LZ compressors that use dictionaries of many kBytes and operate on 8 bit bytes).
They also tracked the recent compression behavior of programs to dynamically adapt
the amount of compressed memory to different phases of the program. Unlike the
LRU system in [2] they recorded how well the replacement policy worked by looking
at evicted pages. The scheme was evaluated using a trace driven simulator and
showed that compressed caching can eliminate 20 % to 80 % of the paging cost. We
make use of the WK4x4 compression algorithm developed by these authors and show
performance improvements on an actual system.

A hardware compressed random access memory (C-RAM) was analyzed in [11]. The
authors considered the implications on the directory structure and storage allocation
design required for a hardware implementation. The approach is further investigated
in [6] where an additional level 3 cache is interspersed between a completely com-
pressed main memory and the level 2 cache. The compression engine is managed by

14



the memory controller in this design. As outlined in [12], operating system support
is required to maintain system stability in the face of poor compression ratios. Some
of the solutions include zeroing out pages that are no longer used, adjusting the pag-
ing threshold based on feedback from the compression engine, and kicking off high
priority kernel threads to steal cycles from the application program which gives the
system time to stabilize. Since this solution requires an additional level of caching
and a new memory controller, it us only suitable for new computers. Our results
on the other hand show that one can get performance improvements using a pure
software approach. The device driver design can be incorporated in future as well as
existing systems.

7 Conclusion and Future Work

This report summarizes our research on implementing a compressed memory in com-
puter systems. We propose compressing memory pages that need to be paged out
and storing them in memory. This hides the large latencies associated with a disk
access, since the page has to be merely uncompressed when a page fault occurs. Our
implementation is in the form of a device driver for Linux. We show results with
SPEC 2000 benchmarks and a computational kernel applications. It is seen that
speed-ups ranging from 5 % to 250 % can be obtained when compared to execution
without memory compression. It is also seen that the optimal fraction of memory
that should be reserved for compression lies around 25 % across a wide range of
application types.

Our current work involves evaluating different compression algorithms for obtaining
better performance. We also plan to investigate the behavior of our system in the
presence of multiple large applications running at the same time. Finally, we plan to
implement dynamic sizing of the compressed memory region to adapt automatically
to different application behaviors.
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