
Application Level Hand-off Support for Mobile
Media Transcoding Sessions

Sumit Roy, Bo Shen, Vijay Sundaram1, Raj Kumar
Hewlett-Packard Laboratories
1501 Page Mill Rd.
Palo Alto, CA 94304

1currently at the Department of Computer Science, University of Massachusetts, Amherst, MA 01003, work per-
formed while intern at Hewlett-Packard Laboratories



ABSTRACT

Media transcoding can be used to enable mobile devices that have low resolution and
low bit-rate capabilities to access content created for stationary, desktop clients with
high bandwidth connections. By deploying transcoding servers near the edge of a
large network, it becomes possible to support clients with multiple resolutions, while
limiting the bandwidth requirements in the core network.

In this paper we look at the problem of supporting mobility of such device by seam-
lessly handing off media transcoding sessions between servers. We explore different
hand-off solutions, starting with the transfer of sufficient amount of state so as to
produce byte identical streams when compared to the case when there is no hand-off.
However it is found that such a scheme introduces a considerable amount of hand-off
delay at the client, due to the large amount of data that needs to be transferred. We
propose, analyze and experimentally evaluate more efficient hand-off schemes that
reduce delay by coarsening the granularity of the hand-off, and relaxing the require-
ment for byte identical outputs. We find that these scheme introduce no noticeable
degradation in the output quality. These hand-off schemes can also be used to provide
load-balancing at the transcoder, or for fault tolerance.

1 Introduction

The ever increasing popularity of the Internet has brought heterogeneous devices
together. Users are accessing web-pages and e-mail from their desktops, laptops,
Personal Digital Assistants, as well as cellular phones. At the same time, there is
greater expectation from users to obtain rich media services via their access devices.
When delivering streaming video over the Internet, some key challenges and concerns
include the ability of the receiving device to decode compressed video, regardless of
its display space and available network capacity. This necessitates content adaptation
or media transcoding algorithms that adapt compressed media, originally created for
high-bandwidth, thick clients, into compressed media content that can be viewed by
lower bandwidth thin clients, such as wireless hand-held devices. For example, the
original compressed media content may have been coded at a higher resolution and a
higher bit rate, say 720×480 at 2 to 8 Mbps for DVD quality, or 320×240 at 1.5 Mbps
for desktop clients connected to the Internet through a T1 line. However, due to
the characteristics of mobile wireless communication systems, i.e., low bandwidth
channels and limited display space on clients, a 100 kbps video at a lower resolution
may be desired. Current 3G wireless communication is trying to provide a 128 –
384 kpbs communication channel. Therefore, a transcoder is needed to adapt the
compressed media content to the appropriate size and bit rate.

With the introduction of fast compressed domain transcoding algorithms [1, 2, 3, 4]

2



and efficient implementations on modern processors [5], real time video transcoding
can be achieved. Thus, video transcoding services can be deployed as an Active
Service [6] or become part of a Content Services Network [7].

A mobile, wireless client would thus try to access a video transcoding server that is
close (in a network sense). However, since the client is moving during the session, it
is likely to be closer to another transcoding server after some time. In the absence
of any hand-off mechanisms, the network path length between the client and original
transcoding server would constantly increase. The increase in latency would lead to
intolerable inter packet delay and loss in video quality at the client.

Transport level hand-off and mobile IP like solutions can only be applied to achieve
location transparency for the client [8]. Thus, new content can be obtained from a
proxy server that is closer to the current location of the client. Appropriate buffer-
ing techniques at the client can also deal with handing-off simple media streaming
sessions [9]. However, an on-going transcoding session has considerable state associ-
ated with it, and thus requires application level hand-off. The alternative is an ever
increasing network distance between the original transcoding server and the moving
client. Moreover, wireless clients like cell-phones are power constrained and one would
like to have as small a memory buffer as possible on the client.

In this paper we explore some solutions to the problem of application level hand-off
for supporting video transcoding sessions for mobile clients. We start with a simple
implementation that essentially performs a process migration [10] by transferring
complete state to the new transcoder. This produces byte identical streams when
compared to the case when there is no hand-off. However, it is found that such a
scheme introduces a considerable inter packet hand-off delay at the client due to the
large amount of data that needs to be transferred between the transcoding servers.
We propose, analyze and experimentally evaluate more efficient hand-off schemes
that reduce this delay, while introducing no visible degradation in the output quality.
These schemes require less processing overhead at the client, and require minimal
buffering. These hand-off schemes could also be used to provide load-balancing at
the transcoder and to add fault tolerance.

The rest of the paper is organized as follows: We formulate the hand-off problem
in Section 2. Section 3 provides some background on the compressed domain video
transcoding system. In Section 4 we describe the basic issues involved in session hand-
off as applied to our scenario. We analyze the performance of the various proposed
hand-off approaches in Section 5. Section 6 shows our experimental results using
these approaches. Section 7 concludes the paper.

3



2 Problem Formulation

Consider a conventional video streaming service with the streams located at a content
server, as illustrated in Figure 1. If the service has to support clients with different

���
�

���
�

Content Server

Router

Router

Mobile Device

Laptop

Desktop

Desktop

Figure 1: High bandwidth requirement with conventional multi-resolution media on
Content Server

display sizes and available bandwidths, e.g. desktops, laptops, and mobile phones,
multi-resolution copies of the video stream have to be created and streamed from the
content server. These multiple versions have to traverse the network from the content
server, via the routers, to the different clients. In the figure, the bandwidth require-
ments of the various clients have been illustrated by using different line thicknesses.

To reduce the bandwidth requirement in the network core, a transcoding service
could be provided on media processing units [11], or co-located with video proxy
servers [12]. When clients with different capabilities access the same content, only
one stream (that for the most capable or thickest client) needs to be sent from the
origin server. The content with lower bit-rate and lower resolution is created as close
to the edge of the network as possible. This is illustrated in Figure 2. Note that we
no longer have to stream the content for the laptop and mobile phones right from
the content server. Instead, lower resolution and lower bit rate versions of the video
stream are created by a transcoding server, in this case co-located at a router.

By reducing the bandwidth requirements in the network core, the loss probability of
packets in the video stream is also reduced. This leads to a better video quality as
experienced by the user. This scenario is especially relevant for streaming of live video,
where there is a single source of the full resolution video stream. On the other hand,

4



���
�

���
�

Content Server

Router

Router

Transcoder

Mobile Device

Laptop

Desktop

Desktop

Figure 2: Lower core bandwidth requirements with Content Transcoding Service

pre-recorded video could be stored on video proxy-servers that could form part of a
streaming media Content Distribution Network (CDN). In this case, one might argue
that there is no load on the core network. On the other hand, by providing a video
transcoding service, one needs to store only one version of the video near the edge.
This reduces storage requirements in the CDN. Thus, by locating the transcoding
servers near the edge of the network, both live and recorded streams can be supplied
efficiently.

The media transcoding hand-off problem arises due to the mobility of thin devices
that have initiated a transcoding session. The challenge is to seamlessly migrate the
session so that it stays close to the client (in a network sense), thus providing high
quality video to the user. It differs from the streaming session hand-off problem, since
considerable state may be built up within the transcoding servers.

3 Compressed Domain Video
Transcoding

Video transcoding as considered in this paper is defined as generating a compressed
bit-stream at lower resolution and/or lower bit-rate given the bit-stream of the origi-
nal video. The conventional transcoding approach requires that the original video be
decompressed and that motion vectors be recomputed for the down-scaled video. This
is followed by re-encoding in a conventional video encoder. Video compression stan-
dards such as MPEG [13] employ motion compensated prediction to exploit temporal
redundancy and achieve a lower bit rate. Motion estimation is often employed in the

5



motion-compensation process; however, this process is very compute-intensive and
typically is at least 60% of the workload of the video encoder. Therefore, recomput-
ing the motion vectors causes the problem of video down-scaling from a compressed
bit-stream to be a computationally intensive task. This places a heavy burden on a
transcoding server that may have to carry multiple transcoding sessions in real time.

IDCT
VLC

Decoder
Inverse

Quantizer

Motion
Compensation

Down Sampling

motion vector

FDCT

-

Motion
Compensation

Forward
Quantizer

Rate Control

VLC
Encoder

number
of bits

consumed

MV
Generator

new
motion
vector

downsampled frame
output
stream

reconstrcucted frame

Mode
Decision

macroblock mode

input
stream

Figure 3: Compressed Video Transcoding System

Figure 3 illustrates the processing flow of a compressed-domain transcoding system
for MPEG video [3]. The Variable Length Coder (VLC), Quantizer, and Motion
Compensation modules in the decoder and encoder paths are standard building blocks
for MPEG systems. The MV Generator module is responsible for generating the new
motion vector by averaging the existing motion vectors. In the transcoding system,
the spatial frames are reconstructed and down-scaled in the spatial domain but the
motion vectors are estimated directly from the existing motion vectors in the original
sequence. Therefore, a costly motion estimation process is saved. Similar systems
can also be developed for the down-scaling of H.261 and H.263 bit-streams [1].

In addition, the coding type of the output macroblock is also decided using the coding
types of the input macroblocks. This task is accomplished by theMode Decision mod-
ule. For instance, if down-scaling by a factor of two, there are four input macroblocks
involved in generating one output macroblock. If most of the input macroblocks
are intra, the output macroblock is coded as intra. Conversely, if most of the input
macroblocks are predicted, the output macroblock is coded as predicted, in which
case, the output macroblock is constructed using the new motion vector produced by
the MV Generator module. On the other hand, if the output macroblock is decided

6



to be predicted, but there is one intra macroblock, one skipped macroblock among
the input macroblocks, we treat the intra macroblocks and skipped macroblocks as
predicted macroblocks with zero-valued motion vector. Note that the skipped mac-
roblocks in bi-directionally interpolated frames in MPEG or H.263 video may have
non-zero-valued motion vectors.

The bit rate of the output bit-stream is controlled by the Rate Control module. The
Rate Control module also uses the compressed domain information existing in the
original stream. It first estimates the number of bits available to code the picture
then computes a reference value of the quantization parameter based on buffer fullness
and target bit rate. Finally, it derives the value of the quantization parameter from
the generated reference according to the spatial activity of the macroblock. The
spatial activity is derived from the DCT coefficient activity in the input macroblocks.
A detailed analysis of the algorithm is available in [3, 4].

There are two types of state information associated with the transcoding process:
reconstructible state information and dependent state information. Reconstructible
state information can be recreated given an input stream. It consists of reference
frame data (both original and down-sampled ones) and meta-data such as macroblock
level side information. Dependent state information includes data derived from the
output stream. For example, the Rate Control module takes the number of bits
consumed so far to evaluate the bit budget that can be allocated for the next coding
unit. The volume of reconstructible state information is usually much larger than
that of the dependent state information. In general, a transcoder needs to maintain
and communicate at least dependent state information for a session hand-off since
the output stream is not shared between the transcoding servers.

4 Session Hand-off Overview

As discussed in Section 2, a transcoding session hand-off is required when the move-
ment of a client causes the current transcoding server to be inefficient for the client’s
new location. For example, after a client moves, a different transcoding server may
be more directly in line with the shortest network path between the original content
server and the new location. When this occurs, migrating the transcoding session
from the original transcoding server to the more direct transcoding server increases
the efficiency of the overall system by reducing the excess network resources that must
be used to route the media to the more distant transcoding server. In this section, we
discuss the basic requirements necessary for a transcoding session hand-off between
two transcoding servers, and we describe various hand-off options that can be used
depending on which entities initiate and control the actual transcoding hand-off.

Figure 4 shows the path a video stream takes from the Content Server to the Mobile

7



Client. The client initially requests a video stream from Transcoding Server 1 (TS1).
This server requests the full resolution, high bit rate stream from the Content Server.
After the Content Server starts sending the video, Transcoding Server 1 reduces the
resolution and bit rate of the video streams and forwards it to the Mobile Client.
When the TS1 receives a notification that the client has moved away from it, and
closer to some Transcoding Server 2 (TS2) , it initiates a Session Hand-off handshake.
TS2 requests the same video stream from a content server (usually with an offset
corresponding to the current position in the file). Once the second server starts
transcoding and streaming to the Mobile Client, TS1 can shut down its own session.

Content Server

Transcoding Server 2

Mobile Client

Transcoding Server 1

Session 
Handoff

RTP

TCP

Figure 4: Transcoding Hand-off Setup

4.1 Basic Information Requirements

In principle three pieces of information should be reliably communicated for a suc-
cessful hand-off:

1. The parameters for the transcoding session, including specifications from the
clients request, the current position (offset) in the video stream, and some way
of locating the video object, e.g., via a Uniform Resource Locator. This require-
ment would also be present when performing a simple streaming hand-off [9].
The Content Server should preferably have the ability to seek to a specified file
offset. Otherwise, TS2 could request the video stream from the beginning and
discard incoming data from the Content Server until the offset is reached.

8



2. Video specific header information associated with the file, that the new transcoder
will need in order to transcode the video file. Since this information is typically
present at the beginning of the video stream, it is possible to cache it on TS1
and transfer it from there. Sometimes this information is provided as part of
the control handshake, for example using the Session Description Protocol [14].
Alternately, TS2 could request some prefix of the video from the content server
and parse it.

3. State information that the transcoder maintains internally while transcoding
the video object. This includes reconstructible state information, like the pixel
values for reference frames that TS2 needs to reconstruct dependent frames,
transcoded reference frames for computing residuals, as well as dependent state
information like current rate control information to ensure that the bit-rate
specified by the client is maintained.

4.2 Hand-off Protocol Design

The three elements in the path shown in Figure 4, themobile client, the content server,
and the transcoding server, need not be involved equally in the hand-off protocol. The
hand-off could be initiated by the client, the content server, or the transcoder, or by
some monitoring agent within the network. After initiation, the actual protocol could
also be controlled by any of these entities. In the qualitative analysis below, we assume
that a relatively high bandwidth network connection exists between the servers, and a
reliable transport protocol like TCP is used. The rate controlled video stream would
be carried over a protocol like RTP over UDP.

4.2.1 Client Controlled Hand-off

A client may decide to hand-off if it sees a lot of packet loss in the stream arriving
from one transcoder, or if it receives a signal from the transcoder to switch to another
transcoder. This approach has a number of problems. If the transcoders do not talk
to each other, then all the information listed in Section 4.1 has to go a long path from
the initial transcoder via the client to the new transcoder. This transmission would
have to be over a reliable transport protocol. If the client is a mobile client, it has
limited power, and it would be best if its involvement were minimal in the hand-off.

9



4.2.2 Content Server Controlled Hand-off

A content server may initiate a hand-off if it gets a signal from the transcoder that it
is overloaded. However this requires that the server maintains state information for
all of its transcoding sessions. This is clearly not a very scalable solution, even though
a content server has limited content, it has to maintain information for every session.
If the content server is implemented as a distributed video proxy, the state would
have to be replicated in some fashion. Also, similar to the client controlled case, the
server may have to update its state information from the old transcoder before it can
send it to the new transcoder. Finally, this approach implies that transcoding can
not be transparent to the content server.

4.2.3 Transcoder Controlled Hand-off

A transcoder is thus a preferred place to control the hand-off, since all the information
needed to do the hand-off i) the video header information, ii) the file offset of the
file that the transcoder is transcoding and iii) the transcoder state information, is
available. In this scenario only the two transcoders need to talk to each other without
the involvement of either the content server or the client. The only requirement at the
client is the ability to buffer and reorder packets if there is an overlap of transmission
from both transcoders. The content server only needs to be able to send a file from
some specified offset. This approach thus maintains a high degree of transparency
with regards to the client and original content server.

In the remainder of the paper, the term hand-off is applied to transcoder controlled
hand-off. The hand-off initiation could still be due to a signal from the client, a
network monitor, or due to a overload at the first transcoding server.

5 Analysis of Hand-Off Schemes

The analysis focuses on the extra propagation delay seen by the client due to a hand-
off of the transcoding session. It is assumed that similar and relatively consistent
network conditions exist for the links between the transcoders and the client at the
instant of the hand-off. The transcoders perform transcoding in real time. The
resulting bits are accumulated in a fixed-size packet buffer and subsequently sent
to the client when the buffer is full. We assume that the packet size used for video
streaming is small enough so that there is a negligible delay between the instant when
the packet buffer is empty and the instant a full packet has been sent out. Based on
these assumptions, we propose the following hand-off schemes:

10



5.1 Single Step Explicit Switch (SSES)

TS 2TS 1Client Content Server

StartSession 1
2

3
4

5
6

7
8

9

Time

Hand−off

Figure 5: SSES Hand-off Timeline

Figure 5 shows the traffic between the entities involved in a transcoding hand-off. At
some point in time the Client initiates a transcoding Session Start by sending message
1 to the first transcoding server TS1. TS1 requests the original video object from the
Content Server with message 2. Data flow 3 denotes the stream of the original video
object. TS1 converts the stream to a lower resolution and lower bit rate version, and
streams an approximately constant bit-rate stream, 4, to the client.

Message 5 is the hand-off start message, and it can be combined with or immediately
followed by the state transfer message 7. While TS1 transfers its state, TS2 can
concurrently initiate a new session with the Content Server, using message 6. Once
the Content Server starts streaming the original video to TS2 using flow 8, and the
complete state has been transfered, TS2 creates and transmits the transcoded stream
9 to the client. Note that TS1 stops transcoding as soon as it initiates the transfer,
and TS2 can only proceed with its transcoding session by the explicit arrival of the
state information. Hence we call this method single stage with explicit switching
(SSES) hand-off.

For transcoding sessions without hand-off, the client receives packets in constant time
interval. This is not the case with hand-off. To evaluate the performance of the hand-
off scheme, we use inter packet delay to represent the interval between continuous
packets that arrive at the client. The inter packet delay for SSES hand-off is thus
expressed as follows:

11



Source Resolution Frame Meta Total Transferred
Format Data Data → CIF → QCIF

(pixels) (bytes) (bytes) (bytes) (bytes)
CCIR 601 720× 480 2073600 648000 3352064 2895872

CIF 352× 288 608256 190080 - 972608
QCIF 176× 144 152064 47520 - -

Table 1: Amount of state transferred for SSES. The total includes fixed overheads.

Delay = tstart + max[txmt(S1), tsetup]. (1)

where the components are:

tstart : Time for sending start message to TS2

txmt(x) : Time to send x bytes from TS1 to TS2

tsetup : Time for a session setup with

the Content Server by TS2

S1 : The amount of state information

The amount of data that needs to be transferred S1 depends on whether the transfer
is done at a packet, frame, or group of pictures (GOP) boundary. Full state infor-
mation has to be sent during hand-off, and this scenario can happen at the packet
boundary, i.e., whenever the output packet buffer is full. The dominant terms in
the state transfer data set include the information required to do reconstruction of
the next frame of original input video and transcoded output video. This includes
pixel information as well as side information such as macroblock mode. Table 1 gives
the amount of data required for the the state transfer. The major components are
the YUV pixel information of the reference frames for the original video, required
for performing reconstruction at the new transcoder; macroblock information for the
reference frames; as well as YUV pixel information for the reference frames for the
down-sampled video.

The resulting state transfer time for transcoding between different standard video
sizes on networks of different available bandwidths is shown in Figure 6.

Note that the tstart message only includes information to locate the original video
file (e.g., using a URL), and the current file offset. Thus the time taken is governed
by the latency between TS1 and TS2. Also, the tsetup can be made very small by
replicating content at the transcoding server. Hence the state transfer component
tends to dominate the delay time. It is not possible to hide this delay unless one uses
buffering at the client, or TS2 can transcode much faster than real time. If there is

12



0

500

1000

1500

2000

2500

3000

3500

1 10 100 1000

T
ra

ns
fe

r 
tim

e 
(m

s)

Bandwidth (Mbps)

CCIR 601 to CIF
CCIR 601 to QCIF

CIF to QCIF

Figure 6: State transfer time for different transcoding pairs and bandwidths

no back-channel, then the new transcoder would send data at the same fixed rate as
the original transcoder. Thus, after multiple hand-offs, the client would eventually
drain out its buffer, and the video quality would deteriorate. On the other hand, by
transferring complete state, the stream resulting from the hand-off is byte-identical
to a stream that is not handed-off at all.

5.2 Two Step Explicit Switch (TSES)

In the SSES scheme, the dominant state transfer term arises since the transcod-
ing hand-off can occur at any time in the session. To reduce the amount of state
information that needs to be transmitted, we can select to have the hand-off at a
frame/picture boundary. In this scenario, a hand-off request may appear when TS1
is in the midst of transcoding a compressed frame. TS1 starts the hand-off, but waits
until the current frame is finished before sending the final switch message.

As shown in Figure 7, TS1 sends the Session Start message 1 to the Content Server
as before, and a transcoded stream 4 is generated. At hand-off time, message 5 is
sent to TS2 with the video content information and offset. TS2 can contact the
Content Server for the video stream via setup message 6. At the same time, TS1
sends partial state information 7 that TS2 needs to start transcoding. TS1 then
finishes transcoding the current frame. After sending the last packet (composed by
whatever transcoding result is left in the output buffer) to the client, TS1 sends a
switch message 9 to TS2 along with the final state information. For example, if the

13



current frame is a P-picture in MPEG’s case, the reference picture needs to be sent
to TS2.

TS 2TS 1Client Content Server

StartSession 1
2

3
4

5
6

Time

8
7

9
Hand−off 10

Figure 7: TSES Hand-off Timeline

In this scheme, hand-off start and switch happen in two stages and the switch message
is explicitly sent by TS1. Therefore, this hand-off is called two-stage hand-off with
explicit switch (TSES). When TS2 first gets the start message, it establishes contact
with the original server and start parsing the streamed packets from it after an initial
setup. As an additional optimization, TS2 can locally create the reconstructible
state information as outlined in Section 3. Thus the amount of state that has to
be transferred is reduced by duplicating some computation at the two transcoding
servers. The parsing operation needs to only peek into the input bit stream and
look for a picture start code. In either case, TS2 does not send any bits until the
immediate next picture header is encountered. If the switch message from TS1 has
not yet arrived, TS2 waits for the dependent state information; otherwise, TS2 starts
transcoding and subsequently streaming the result to the client. Therefore, the client
perceived inter packet delay is defined as:

Delay = max[txmt(S2), (tstart + tsetup

+txcode(n)− tx&s(n))]. (2)

where the components are:

txmt(x) : Time to send x bytes from TS1 to TS2

tstart : Time for sending start message to TS2

tsetup : Time for a session setup with

the Content Server by TS2

14



txcode(n) : Time to transcode n frames on TS2

tx&s(n) : Time to transcode n frames on

TS1 and send them to the client

S2 : The amount of state information

Here n is determined by the hand-off granularity, i.e. in case of MPEG it could be a
picture or a GOP. The tstart and tsetup behave exactly as discussed for SSES. The

tx&s(n) term should be smaller than the txcode(n), since TS1 has to throttle the
transfer of bytes to satisfy the bit-rate requirement at the client. TS2 on the other
hand can transcode the same data at full speed, since the only objective is to set
up the reconstructible state information. Hence the term txmt(S2) is expected to
dominate the delay.

If the hand-off boundary is a GOP, only rate control information needs to be sent,
since a group of picture (GOP) can be relatively independent from the previous GOP.
Note that there is still dependency if an open GOP [13] is involved at the switch point.
With less dependency, S2 becomes small, therefore the delay is reduced.

5.3 Two Step Implicit Switch (TSIS)

TS 2TS 1Client Content Server

StartSession 1
2

3
4

5
6

Time

Hand−off
7

8

Figure 8: TSIS Hand-off Timeline

To further hide the delay from the client, one has to eliminate the txmt(S2) term
from Equation 2. In this scenario the switch happens at a GOP boundary or some
type of boundary that is relatively less time-dependent. As shown in Figure 8 and
similarly to TSES, TS1 continues transcoding after sending the start message 5 to
prepare TS2 for the setup. After establishing a connection with the content server

15



using message 6 , TS2 starts transcoding data immediately. The transcoding is only
used to recover reconstructible state information that maybe used in the future. No
output bit stream is generated, therefore no packets are sent to the client. There will
be no explicit switching message sent from TS1 and TS2, rather, TS1 and TS2 pre-
agree that the switch will happen at the next GOP boundary. Hence this approach is
called two-stage hand-off with implicit switching (TSIS). In this approach, no state
information is sent from TS1 to TS2.

TS1 will stop transcoding at the next GOP boundary; on the other hand, TS2 will
start the transmitting of transcoding results at the next GOP boundary. The client
perceived inter packet delay is therefore derived as follows:

Delay = tstart + tsetup

+txcode(N)− tx&s(N). (3)

where the components are:

tstart : Time for sending start message to TS2

tsetup : Time for a session setup with

the Content Server by TS2

txcode(n) : Time to transcode n frames on TS2

tx&s(n) : Time to transcode n frames on

TS1 and send them to the client

N : The number of frames till the next GOP

The key issue here is that the transcoders pre-agree on how much computation will
overlap, since the hand-off will always occur at a GOP boundary. The possible
drawback of this technique is that the Delay term can be negative, i.e., the first few
packets from TS2 arrive before the last packets from TS1. This can be solved by
having a small reordering buffer at the client. Moreover, no back-channel is required
at the client to avoid buffer overflow. Instead the values of tstart and tsetup are
estimated from the network. Then the amount ofDelay can be controlled by adjusting
the number of GOPs that the two transcoders overlap. Thus, the hand-off protocol
can be adapted to network delays and client buffering capabilities.

From another standpoint, since the hand-off always happens at the GOP boundary,
it could happen that the start message is sent right before the last frame of a GOP
is transcoded on TS1. In this case, TS2 may not have enough time to catch up,
effectively, tsetup could dominate the hand-off delay. To overcome this problem, TS1
and TS2 can pre-agree to switch in two GOPs, therefore at least one GOP worth of
time can be guaranteed for TS2 to catch up.

16



6 Experimental Results

For the experiments we stream an MPEG1 video sequence between the content
server and a client via two transcoding servers. The video sequence has 982 frames
of 352 × 240 pixels, and is coded at 30 fps with 15-frame GOPs. To ensure re-
peatability, the hand-off always occurs exactly after 32 GOPs. The content server
is an HP Netserver LH6000, with two 700 MHz Xeon processors, 512 Kbyte full
speed L2 cache, 1.2 Gbyte main memory, and the content is stored on a hardware
RAID 0 partition. The transcoding servers are two HP NetServer LP1000r PCs, with
1.4 GHz Pentium III processors, 512 Kbyte full speed L2 cache, and 256 Mbyte main
memory. The client is an HP Kayak XU800 with a 733 MHz Pentium III proces-
sor, 256 Kbyte full speed L2 cache. All the machines are connected together via a
100 Mbps HP ProCurve 4000 Ethernet switch.

We repeat this experiment using the approaches described in the previous section.
For TSIS we show results with one and two GOP overlaps. For each approach we
record the packet arrival times at the client, and also capture the transcoded output
to a file for quality assessment.

Figure 9 shows the difference in arrival time for each continuous pair of packets with
respect to the session time. This delta time should ideally be a constant value for a
constant bit-rate stream as produced by the transcoder. However, the figure clearly
shows that the SSES scheme introduces a large delta at the hand-off point. This leads
to a correspondingly degraded video experience at the client, since the video stream
falls approximately 12 frames behind at this point. The delay time is about 400 ms
for the down-scale-by-two transcoding. This agrees well with the numbers predicted
from Figure 6. Some additional delay is caused by the TCP slow start property. Note
that some RTP data packets arrive at the client after hand-off has started due to the
threaded implementation of our transcoder.

In contrast, Figure 10 shows the same metric for the TSES scheme. Here there is a
much smaller delta in the inter-packet arrival delay. However, note that the experi-
ment had very good network conditions. Again, due to the threaded implementation
of the transcoders, some packets from TS1 arrive interleaved with packets from TS2.

Figure 11 shows the packet arrival versus the sequence numbers for each of the cases.
Note that the break in the sequence number is due to the hand-off from one transcoder
to the other. We have restricted the horizontal range to show the region of interest,
i.e., around the hand-off point.

From the graph, the inter packet delay seen at the client for SSES is approximately
400 ms. Since we choose to have a TCP connection for the hand over of important

17



0

50

100

150

200

250

300

350

400

15 16 17 18 19 20

D
el

ta
 (

m
s)

Timestamp (s)

SSES

Figure 9: Packet Arrival Deltas for SSES scheme

state information, the slow start property may hinder the performance of the hand-
off, especially when the state information contains a significant amount of data. The
state information in this experiment includes reconstructible and dependent state
information. For this set of experiments, the total state data transferred adds up to
900 kbytes.

For TSES hand-off, the client perceived delay is expected to be smaller regardless
of the connection between TS1 and TS2 since less state information needs to be
sent. In addition, the state information is sent in two separated instances. The TCP
transmission time for the second part of the state information is further hidden by
the difference between txcode(n) and tx&s(n). Indeed, the parsing of the input bit
stream till the next picture header on TS2 is usually much faster than the transcoding
and streaming of the remaining part of the frame on TS1. As seen in the experiment,
there is hardly any noticeable delay at the client. However, this may also be because
the experiments are conducted in close to ideal lab environments.

In the TSIS scheme, the ideal case is when tstart + tsetup + txcode(N) = tx&s(N),
therefore the delay is zero. In practical cases, either a negative or positive delay
is expected. A negative delay indicates that the client may receive packets out of
order. In other words, a client buffer is needed or packet dropping is expected. The
rationale of the selection of the GOP boundary as the switch point is because it gives
TS2 sufficient time to catch up.

We also calculated the Mean Square Error (MSE) of the handed-off video with respect

18



0

50

100

150

200

250

300

350

400

15 16 17 18 19 20

D
el

ta
 (

m
s)

Timestamp (s)

TSES

Figure 10: Packet Arrival Deltas for TSES scheme

to the output from a transcoding session without any hand-off. Figure 12 shows the
MSE during the hand-off period for TSIS measured when the hand-off is done in 1
GOP. Note that SSES gives a byte identical stream. The large glitch for the first B
frame is because the transfer was done across an open GOP and only incomplete state
was transferred. However, the overall error is less than one unit, thus this relaxed
hand-off approach still provides very good quality video.

Figure 13 shows the MSE when using TSIS with 2 GOP overlap. Some of the initial
noise terms drop off, since the second transcoder has some extra time to catch up
with the first transcoder.

7 Conclusion

This paper presents some solutions to the problem of handing-off media transcoding
sessions, in particular to provide support to mobile clients. In general, an adaptive
transcoding hand-off algorithm can be designed to select a method based on four
parameters:

1. The network condition between the transcoding servers, TS1 and TS2.

2. The network conditions between the transcoding servers and the Content Server.

3. The computational load on TS1.

4. The computational load on TS2.

19



25000

30000

35000

40000

15000 15500 16000 16500 17000 17500 18000

R
T

P
 S

eq
ue

nc
e 

nu
m

be
r

Timestamp (ms)

SSES
TSES
TSIS

Figure 11: Packet Arrival Times

In particular, we have presented three different schemes, SSES, TSES, and TSIS.
Among these schemes, SSES has the least amount of extra transcoding overhead. In
addition, this hand-off scenario can sustain an abrupt failure at TS1. On the other
hand, it is hard to hide the extra inter packet delay at the client since a large amount
of state needs to be transferred to the new transcoder TS2. The TSES scheme reduces
the amount of state transferred, and thus requires a medium amount of communica-
tion between the transcoding servers. We achieve this by having a coarser granularity
in terms of the hand-off point, and by using two steps to transfer the state. However,
the final message latency could still produce a large inter packet gap at the client and
affect video quality. The final scheme, TSIS has a larger computational overhead.
Minimal state is transferred between the transcoding server, and the resulting video
stream is no longer bit-identical to the original stream. However, we show that the
Mean Square Error introduced is very small. At the same time, this scheme has the
potential of requiring least buffering at the client.

8 Acknowledgments

We would like to thank John Apostolopoulos and Susie Wee for their detailed and
helpful comments on initial drafts of this paper. We also thank the anonymous
reviewers for their feedback.

20



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600 700 800 900

M
ea

n 
S

qu
ar

e 
E

rr
or

Frame Number

TSIS 1 GOP

Figure 12: MSE during Hand-off for TSIS with 1 GOP overlap

Bibliography

[1] S. J. Wee and N. Feamster, “An MPEG-2 to H.263 transcoder,” in Proceedings of
the SPIE Voice, Video, and Data Communications Conference, (Boston, MA),
September 1999.

[2] S. J. Wee, J. G. Apostolopoulos, and N. Feamster, “Field-to-frame transcoding
with temporal and spatial downsampling,” in Proceedings of the IEEE Interna-
tional Conference on Image Processing, (Kobe, Japan), October 1999.

[3] B. Shen, I. Sethi, and V. Bhaskaran, “Adaptive Motion-vector Resampling for
Compressed Video Downscaling,” IEEE Transactions On Circuits and Systems
for Video Technology, vol. 9, pp. 926 – 936, September 1999.

[4] B. Shen and S. Roy, “A very Fast Video Spatial Resolution Reduction
Transcoder,” in To appear in Proceedings of ICASSP 2002, (Orlando, FL), May
2002.

[5] S. Roy and B. Shen, “Implementation of an Algorithm for Fast Down-Scale
Transcoding of Compressed Video on the Itanium,” in Proceedings of the 3rd
Workshop on Media and Streaming Processors, (Austin, TX), pp. 119 – 126,
December 2001.

[6] E. Amir, S. McCanne, and R. Katz, “An Active Service Framework and its Appli-
cation to Real-time Multimedia Transcoding,” in Proceedings of SIGCOMM’98,
(Vancouver, B.C.), 1998.

[7] W.-Y. Ma, B. Shen, and J. Brassil, “Content Services Network: the Architecture

21



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800 900

M
ea

n 
S

qu
ar

e 
E

rr
or

Frame Number

TSIS 2 GOP

Figure 13: MSE during Hand-off for TSIS with 2 GOP overlap

and Protocols,” in Proceedings of the International Web Content Caching and
Distribution Workshop, (Boston), June 2001.

[8] H. Balakrishnan, S. Seshan, and R. H. Katz, “Improving Reliable Transport and
Handoff Performance in Cellular Wireless Networks,” ACM Wireless Networks
Journal, vol. 1, December 1995.

[9] R. Karrer and T. Gross, “Dynamic Handoff of Multimedia Streams,” in Proceed-
ings of NOSSDAV’01, (Port Jefferson, NY), pp. 125 – 133, June 2001.

[10] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou, “Process
Migration Survey,” ACM Computing Surveys, September 2000.

[11] J. Boyce, M. Cortes, and J. R. Ensor, “Audio/Video Messaging for Multiple
Devices,” in Proceedings of NOSSDAV’00, June 2000.

[12] S. Acharya and B. Smith, “MiddleMan: A Video Caching Proxy Server,” in
Proceedings of NOSSDAV’00, 2000.

[13] J. L. Mitchell, W. B. Pannebaker, C. E. Fogg, and D. J. LeGall, MPEG Video
Compression Standard. Standard, Chapman and Hall, 1995.

[14] M. Handley and V. Jacobson, “SDP: Session Description Protocol.” RFC 2327,
April 1998.

22


