
ARCHITECTURE OF A MODULAR STREAMING MEDIA SERVER FOR CONTENT
DELIVERY NETWORKS

Sumit Roy, John Ankcorn, and Susie Wee

Streaming Media Systems Group
Mobile and Media Systems Laboratory

Hewlett-Packard Laboratories, Palo Alto

ABSTRACT

A Mobile Streaming Media Content Delivery Network can
facilitate the access of rich multimedia streams by mobile
users on next generation wireless networks. A principal
component of this network are the edge servers that coop-
erate to provide streaming functionalities. This paper de-
scribes some of the design requirements for such servers.
It then describes the architecture of such a streaming server.
Features included are the ability to cache streaming content,
a modular design, and an intelligent scheduler for providing
better video quality in varying network conditions. Finally,
preliminary performance results are shown.

1. INTRODUCTION

The availability of ever increasing bandwidths on the wired
and wireless Internet increases user expectations in terms of
viewable content. In particular, rich multimedia is poised to
be a growing fraction of network traffic. However, stream-
ing media has large storage and bandwidth requirements,
and this poses considerable challenges. Delivery of such
content to mobile end users is facilitated by constructing a
Mobile Streaming Media Content Delivery Network (MSM-
CDN) [1]. The basic component of such an MSM-CDN is
a streaming edge server or surrogate. A collection of coop-
erating surrogates forms a virtual overlay network on an ex-
isting network infrastructure.This overlay network can then
be managed to form an efficient content delivery network.

Prior work related work on streaming servers for Video-
on-Demand systems [2] has focused on research problems
related to optimal resource utilization within a server (eg.

Copyright 2002 IEEE. Published in the 2003 International Conference
on Multimedia and Expo (ICME 2003), scheduled for July 6-9, 2003 in
Baltimore, Maryland, USA. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or re-
distribution to servers or lists, or to reuse any copyrighted component of
this work in other works, must be obtained from the IEEE. Contact: Man-
ager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane
/ P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl.
908-562-3966.

disk access optimization), and bandwidth utilization in the
presence of a limited amount of content. However, there
are some important differences in the design of a stream-
ing server that forms part of a MSM-CDN. For example,
each edge server could cooperate with other servers to form
a distributed caching system. The servers may be used to
effectively disseminate live media streams. They could also
be used by mobile users to upload video streams that then
need to be shared with other users.

Another related research area is web caching using prox-
ies. These proxies reduce bandwidth consumption, load at
the origin server, as well as latency seen by the client, in
addition providing greater fault tolerance in case the origin
server is not accessible. However, caching for streaming
media sessions has additional challenges. The amount of
data is significantly larger than typical web-pages (multiple
megabytes instead of multiple kilobytes), and sessions are
of much longer duration than typical web-page downloads
(of the order of minutes and hours, as opposed to seconds).

This paper describes a streaming server architecture that
is designed for a mobile streaming media content distribu-
tion network. A system for caching streaming media for sta-
tionary clients was described in [3]. In contrast, our archi-
tecture is targeted towards mobile clients, and is designed
to support a mix of stored streams, live streams, as well as
content upload and concurrent sharing.

The rest of the paper is organized as follows. Section 2
elaborates on the essential design requirements. The server
architecture is explained in detail in Section 3. Preliminary
performance results are shown in Section 4. Section 5 con-
cludes the paper.

2. STREAMING SERVER DESIGN GOALS

A well designed streaming media server for an MSM-CDN
would try to meet the following goals:



2.1. Scalable content delivery

Delivering streaming media content to a large number of
clients poses considerable challenges. A centralized content
server could quickly get overloaded, in terms of I/O require-
ments. A scalable delivery mechanism requires resources
proportional to the number of distinct content items being
accessed, rather than the number of clients. Deployment
of streaming servers at the edge of the network facilitates
this. When multiple clients in the same locality access the
same content from a content server, it has to be transferred
to the edge server only once, for the first client. After that,
the other clients stream the content directly from the edge
server. This reduces the load in the core of the network.
The various edge servers can also cooperate to further de-
crease the load on the core network. If the content is not
available on a particular edge server, it can query its neigh-
bors, who could be closer than the original content server in
a network sense. If the content is found on a neighboring
edge server, the client can either be redirected to that server,
or the content can be downloaded relatively quickly.

Thus the streaming server should have the ability to proxy
streaming content, and to interact with other servers to re-
distribute and balance load amongst them.

2.2. Responsiveness to changing conditions

Streaming media content requires relatively high bandwidths
and stable end-to-end delays, so that the video resolution is
acceptable and the frame rate remains constant during play-
back. Unfortunately, in the current, best-effort Internet, it is
difficult to provide such network performance guarantees.
This is particularly true when the content servers and clients
can have large network distances between them.

The streaming server at the edge of the network can re-
act to local changes in conditions much faster than a content
server in the core network. In current generation wireless
networks using GPRS, the throughput varies from 16 kbps
at the cell center down to 10 kbps at the cell edge, over a
distance of 5 km [4]. Thus there is almost a factor of 2
change in available bandwidth due to client mobility alone.
A streaming server at the edge could adjust the media stream
to utilize current network bandwidth. Moreover, the latency
seen by most clients between the media request and the ar-
rival of the first packet is reduced, since the request can
be satisfied by the local cache if the content is present. If
there is sufficient client side bandwidth, the initial part of the
stream can be sent at a higher than required rate, to further
reduce the wait time seen by the user due to buffering [5].

Thus the streaming server should be able to react to
feedback from the network layer.

2.3. Efficient resource utilization

Streaming media is likely to be accessed by millions of
users, which is particularly a problem when streaming live
media. If every client sets up an individual session with
the original content server, the core network as well as the
origin server will be quickly overloaded. The edge servers
should therefore have support for splitting a single stream
to multiple clients. While IP multicast provides this facility,
it requires network operators to enable this feature in their
equipment. It is estimated that only 5 – 20 % of the current
Internet has multicast support enabled [6]. Application level
multicast on the other hand requires no network infrastruc-
ture support, since it is done in the overlay network.

Streaming media content also requires a large amount
of storage space if the entire clip is to be cached. However,
it has been found, that various parts of a clip have different
probabilities of being viewed by users [7]. Thus, it is more
cost effective to partition the content, and selectively cache
the segments, based on their popularity and access pattern.
It enables a streaming cache to provide better performance
in terms of cache hit ratios and the storage efficiency for a
fixed amount of storage [8].

Thus the streaming server should provide support for
joining and relaying an on-going streaming session from
another streaming server to setup an application level mul-
ticast tree. It should also provide support for transparently
streaming segmented clips to a media client.

2.4. Live video support

Modern cell-phones come equipped with video cameras.
Current GPRS or FOMAnetworks have limited function-
ality like clip capture and video e-mail. Yet this service
provides a rich user experience of casual capture of con-
tent. The edge server can enhance this by providing live
upload. This lets a user capture content into the infrastruc-
ture, avoiding storage limitations of the device. Moreover,
the infrastructure can be used to share this content, either
concurrently, or delayed. Every user becomes a potential
source for publishing personal streaming media content, by
making use of the content delivery infrastructure.

Thus the streaming server should provide support for
uploading and streaming live content.

3. ARCHITECTURAL DETAILS

A streaming media server in a MSM-CDN can help in scal-
able content delivery if it has the following features:

3.1. Caching and segmentation support

The streaming server interfaces to a web cache running on
the same node, as shown in Figure 1.



Streaming
Server

DISK

HTTP

RTSP

RTP

Caching
Engine

HTTP

Media content

Fig. 1. Caching support

When the server receives a request for some content
from a client, typically using the Real Time Streaming Pro-
tocol (RTSP), it first queries the local cache for that file. If
it is not found locally, the cache can then request an HTTP
download of the file, either from the original content server,
or from neighboring caches. A useful optimization is that
the downloaded file does not have to be transferred between
the caching engine and the streaming server. Instead, the
cache returns the location in the local file system from where
the server can start streaming the content. The streaming
server can then send the media data packets, typically using
the Real-time Transport Protocol (RTP).

In case the file is segmented, the server generates seg-
ment names from the base file name from, and prefetches
them before they have to be streamed to a client.

3.2. Modular design

Figure 2 shows that the streaming server consists of multiple
modules. There are different types of streams, File Source,
Network Source, File Sink, and Network Sink. The sources
and sinks are linked together through an intelligent Media
Unit Scheduler.

Media Unit Scheduler

Network Source

File Source

Network Sink

Network Sink

File Sink

Input Queues

SESSION CONTROL

Fig. 2. Modular Design

The File Source stream accesses local content from disk.
This module can internally schedule disk accesses to pro-
vide high throughput for all concurrent streams. In case
of temporary input resource starvation, it could statistically
drop media packets from different sessions [9]. The Net-
work Source has very different operating constraints. It ei-
ther represents an upstream server, or a client that is trying
to record content. In either case, the media unit arrival de-
pends on the upstream scheduler and network conditions.

On the other hand, this type of stream could drop incoming
packets that are known to have arrived too late to be useful
at any client.

The source streams feed media units into the input queues.
These packets are then dispatched to the output streams by
the Media Unit Scheduler. Network Sinks represent typical
mobile clients. These clients have packet delivery deadlines
so that there is no playback buffer underflow or overflow. A
useful feature is to provide feedback about the current net-
work latency and available bandwidth to the scheduler. File
Sinks are used to save streaming content to local disk. This
content would typically be from a live video session. It is
to be noted that saving uploaded content does not have any
deadlines associated with it.

3.3. Intelligent scheduling

The Media Unit Scheduler is used to link together different
types of streams. It looks at all the input queues and decides
an optimal schedule for transferring media units to the out-
put streams. The objective function should be to minimize
the rate-distortion at the client side. If there is sufficient
upstream network capacity and disk bandwidth, all pack-
ets arrive in the input buffers on time. If there is sufficient
downstream network bandwidth, the clients can receive me-
dia packets in time for decoding and presentation. In this
case the scheduler can use a simple earliest-deadline-first
policy. Due to the modular design, the scheduler does not
actually need to know the type of input stream.

In case of reduced resource availability, the Media Unit
Scheduler can take intelligent scheduling decisions. For ex-
ample, if the outgoing network bandwidth for the server de-
creases, it can drop dependent video frames and only trans-
mit independent frames. This maintains a better video qual-
ity than randomly dropping media packets. The scheduler
can also respond to network conditions on a per-client ba-
sis, for example by reordering dependent and independent
frames in the presence of varying network delays [10].

Since the Media Unit Scheduler has a global view of
all streaming session handled by the server, it can ensure
fairness in terms of victimizing clients when packets have
to be dropped, or it can provide better Quality of Service to
premium customers.

4. EXPERIMENTAL RESULTS

The prototype server, called the SMSG server, is designed
for edge servers. It has not been optimized for pure video-
on-demand applications. However, it is useful to compare
its performance against a standard streaming server to eval-
uate whether its feature-rich, modular design introduces any
significant overhead.

The server was compared against the Darwin Streaming



Server [11]. Each server was run on a hp workstation x4000,
with dual 2 GHz Intel Xeon processors, 512 MByte RAM
running the SuSE 8.0 release of Linux. The client was a hp
Visualize C3600, with a 554 MHz PA-RISC 8500 processor,
1 GByte RAM, running HP-UX 11.11. The machines were
connected via a 100 Mbit switched ethernet network.

In the experiments, multiple clients were started, re-
questing movie clips from each server at 50 ms intervals.
Each clip is 60 s in length. Figure 3 shows the latency seen
by each client between sending a PLAY request and receiv-
ing the first video packet. It can be seen that the Darwin
server has a somewhat better performance, presumably due
to its state-based design, as opposed to the multithreaded
approach of our SMSG server. Figure 4 shows the standard
deviation of the packet arrival times compared to an ideal
server that could deliver video data at the exact decode time.
The streaming server described in this paper does a better
job at maintaining accurate delivery deadlines than the Dar-
win server.

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200

de
la

y 
(m

s)

Client Number

SMSG (100 clients)
SMSG (200 clients)
Darwin (100 clients)
Darwin (200 clients)

Fig. 3. Response time for each server

4

5

6

7

8

9

10

11

12

0 20 40 60 80 100 120 140 160 180 200

S
td

. D
ev

. (
m

s)

Client Number

SMSG (100 clients)
SMSG (200 clients)
Darwin (100 clients)
Darwin (200 clients)

Fig. 4. Standard Deviation of Arrival Times

5. CONCLUSION

This paper describes the architecture for a streaming me-
dia server in a Mobile Streaming Media Content Delivery
Network. The current implementation can cache whole me-
dia clips or segmented media. Its modular design allows a
seamless mixture of file streaming, client uploads and ap-
plication level multicast so that multiple clients can see the
same media stream. The prototype is being used in a MSM-
CDN testbed. Preliminary comparison with a pure video
streaming server shows that the prototype has slightly higher
response times, but does a better job at providing on-time
delivery of media packets. This is particularly important for
delay sensitive streaming media applications, like interac-
tive games or video telephony.

6. REFERENCES

[1] S. Wee, J. Apostolopoulos, S. Roy, and W.-T. Tan, “Research and
Design of a Mobile Streaming Media Content Delivery Network,” in
IEEE ICME, (Baltimore, MD), August 2003.

[2] D. Sitaram and A. Dan, Multimedia Servers: Applications, Environ-
ments, and Design. Morgan Kaufman, 2000.

[3] E. Bommaiah, K. Guo, M. Hofmann, and S. Paul, “Design and Im-
plementation of a Caching System for Streaming Media over the In-
ternet,” in IEEE Real Time Technology and Applications Symposium,
2000.

[4] J. Navarro, J. Martinez, and J. Romero, “Throughput Estimation for
EGPRS Services Based on GSM Network Measurements,” in IEEE
55th Vehicular Technology Conference, vol. 1, pp. 150 – 154, May
2002.

[5] S. Jin, A. Bestavros, and A. Iyengar, “Accelerating Internet Stream-
ing Media Delivery using Network-Aware Partical Caching,” in IEEE
International Conference on Distributed Computing Systems, (Vi-
enna, Austria), July 2002.

[6] Multicast Technologies, “Multicast Status Web Page.”
http://www.multicasttech.com/status, 2002.

[7] L. Cherkasova and M. Gupta, “Characterizing Locality, Evolution,
and Life Span of Accesses in Enterprise Media Server Workload,” in
ACM NOSSDAV, (Miami Beach, FL), May 2002.

[8] Y. Chae, K. Guo, M. M. Buddhikot, S. Suri, and E. W. Zegura, “Silo,
Rainbow, and Caching Token: Schemes for Scalable Fault Tolerant
Stream Caching,” IEEE Journal on Selected Areas in Communica-
tions on Internet Proxy Services, September 2002.

[9] H. M. Vin, P. Goyal, A. Goyal, and A. Goyal, “A Statistical Admis-
sion Control Algorithm for Multimedia Servers,” in ACM Multime-
dia, (San Francisco), pp. 33 – 40, October 1994.

[10] S. Wee, W.-T. Tan, J. Apostolopoulos, and M. Etoh, “Optimized
Video Streaming for Networks with Varying Delay,” in IEEE ICME,
(Lausanne, Switzerland), August 2002.

[11] Apple, “Darwin Streaming Server 4.1.3.”
http://developer.apple.com/darwin/projects/streaming/, 2003.


