
Peppermint and Sled: Tools for Evaluating SMP Systems based on IA-64 (IPF)
Processors

Sujoy Basu�, Sumit Roy and Raj Kumar
Hewlett-Packard Laboratories

Hewlett-Packard Company
1501 Page Mill Rd.

Palo Alto, CA 94304

Tom Fisher and Bruce E. Blaho
Technical Computing Division

Hewlett-Packard Company
3404 E Harmony Rd.

Fort Collins, CO 80528

Abstract

In this paper, we describe Peppermint and Sled: tools de-
veloped for evaluations of computer systems based on IA-64
processors. Sled generates trace from applications running
on IA-64 processors, while Peppermint models the complete
system using cycle-accurate, trace-driven simulation. Pep-
permint is based on Augmint [9], which leaves open the
possibility of doing execution-driven simulations in future.

Peppermint and Sled allow us to perform a trace-based
evaluation of 4 applications running on SMP systems based
on Itanium and McKinley processors. We find that the im-
provement in IPC of McKinley relative to Itanium ranges
from 7% to over 100% for our different applications. The
improvement can be attributed to a variety of factors. These
range from the availability of additional functional units
and issue ports in the McKinley processor to our assump-
tion of a better memory system. While the improvement in
performance remains valid in SMP systems in some cases,
higher contention for system bus and memory reduces the
performance gain in other cases. Increasing the system bus
bandwidth and size of queues for pending requests in the
memory controller are identified as first steps for optimiz-
ing SMP performance.

1 Introduction

In this paper, we describe Peppermint and Sled: tools
developed for cycle-accurate, trace-driven simulation of ap-
plications running on IA-64 processors, with the possibility
of doing execution-driven simulations in future. With the
introduction of Itanium processor[10], it has become neces-
sary for system architects to understand the performance of
applications developed for the IA-64 family of processors.
They would like to spend their time on those aspects of the

�contact at sujoy basu@hp.com

design where the maximum impact on performance could
be realized. Some of the different scenarios in which we
envisage the use of Peppermint and Sled are illustrated in
Figure 1.

The design of our simulator Peppermint is influenced by
the complex, real-world technical applications we need to
analyze. The tools will be used primarily to study long
traces captured from such applications, and simulate the
traces by varying various parameters of system components
like the memory controller. However as shown in our ex-
periments in this paper, Peppermint can be used to explore
other aspects of the design space. The motivation for this
project has been the development of a tool set that can be
used for fast exploration of the design space for systems
built around IA-64 processors. Detailed performance sim-
ulations, such as those possible using using flexible simu-
lation environments like [3], can be very slow. Because of
our requirement for fast simulations, we have chosen to se-
lectively model system components. We might iteratively
refine the model later if higher accuracy is required at the
cost of slower simulation speed.

Peppermint currently models one or more IA-64 proces-
sor with three levels of cache, a system bus, memory con-
troller and DRAM chips. All these components are parame-
terized. Peppermint uses a configuration file in which these
parameters are specified. The focus of this paper is to give
the maximum amount of information about the details of
our implementation. Since we are selectively modeling de-
tails of the system architecture, we have chosen to highlight
these details. Then we give the reader some idea about the
basic experiments that can be conducted using our tools.

Although the target architecture for Peppermint is an IA-
64 system, only the generation of IA-64 traces have been
done on Itanium systems using Sled . Peppermint itself has
been developed and tested primarily on PA-RISC comput-
ers running HP-UX and IA-32 computers running Linux. It
takes the trace and a configuration file as input. The actual

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

Identify functions
or whole

applications to be
analyzed

Use Sled to
generate trace by

running
application

Edit configuration file
of Peppermint to
vary the IA-64

system architecture
under study

Run Peppermint
with the generated

trace as input

Identify
architectural

improvements

Edit and compile
source code of

Peppermint to refine
further the system

under study

Optimize
application

Figure 1. Possible uses for Peppermint and Sled

application or the libraries used by it on the IA-64 system
need not be provided to Peppermint since Sled captures all
the necessary information in the trace.

This paper is organized as follows. Section 2 describes
how Peppermint models different components of the system
architecture, and our ongoing work on validation. Section 3
describes in detail how Sled , the tool for capturing IA-64
application traces, is implemented and performs.

2 Architectural Model

In this section, we describe the details of the system ar-
chitecture modeled by Peppermint. In case the reader is
interested in extending the model, experience in writing ar-
chitectural models for Augmint [9] will be required.

2.1 Processor Architecture

2.1.1 Instruction Dispersal

Peppermint parameterizes the issue width of the processor.
For both Itanium and McKinley, this number is 2. This
means that at most 2 instruction bundles will be available
for dispersal every cycle in the dispersal window. Experi-
ments can be conducted by varying this parameter in Pep-
permint. Dispersal is achieved with a decoupling buffer,
which decouples the front end of the pipeline from the rest
of the pipeline. The front end is responsible for fetching in-
structions from instruction cache into the decoupling buffer,
while the back end disperses them. Peppermint has one pri-
mary event corresponding to the front end, and another pri-
mary event corresponding to the back end. Both of these
events are scheduled on every clock cycle.

The event corresponding to the front end reads entries
from the trace file, and schedules corresponding instruction
fetches. The number of such instruction fetches in a cycle
may be limited, of course, by factors like available ports on

the I-cache and number of outstanding cache misses. These
instruction fetch events will in some subsequent clock cy-
cle feed the corresponding instruction bundle into the de-
coupling buffer. Here perfect branch prediction is assumed.
The model can be extended to introduce delay due to branch
mispredictions.

The event corresponding to the back end starts by check-
ing that the dispersal window is filled with bundles. If not,
it shifts the next bundles in the instruction stream from the
decoupling buffer into the dispersal window. This succeeds
unless the bundle is not available due to cache miss. Next
it tries to issue all the instructions in the dispersal window
to their issue ports within the same cycle. To do that, the
instruction bundle is decoded using functions from a library
used by linker and other system tools. Next, rules available
in [7] are used to determine which issue port can be given
an instruction. As soon as an instruction fails to find a free
issue port, dispersal stops for that cycle. All instructions in
sequential order preceding that instruction have been dis-
persed that cycle. Dispersal is said to split-issue at that in-
struction. Also, an explicit stop-bit might be encoded in
the bundle, indicating split-issue at an instruction. Other
special cases for Itanium that cause split-issue are imple-
mented. The reader is referred to [7] for these details. An-
other important cause for split-issue that we implement is
an instruction waiting for a source operand register that is
the target of a load from memory.

2.1.2 Predication

Predicated instructions, for which the predicate register
contains 0, must be squashed in the pipeline without updat-
ing the architectural state. Specifically, Peppermint cannot
mark the target register of such an instruction busy, forcing
some instruction to wait for the register to become available.
This is currently modeled when the predicated instruction is
a load or store. Peppermint uses the value of the predicate

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

register recorded by Sled in the load or store trace entry to
determine whether the load or store needs to be issued to
the memory system, and also whether the target register of
a load needs to be marked busy. This is quite good as a first-
order approximation since loads can have high latency due
to cache misses. If higher accuracy of simulation is desired,
the value of predicate register has to be recorded in the trace
for all instructions; then Peppermint can ensure that other
predicated-off instructions do not mark their target register
busy.

2.1.3 Data Speculation

Data speculation is a technique that allows the compiler to
schedule loads ahead of time. In this case, though, the spec-
ulation arises from the fact that the load has been scheduled
prior to stores that actually precede it in program order and
can potentially write into the memory location from which
the load will be reading. Compile-time analysis for ruling
out such overlapping stores and loads is difficult when dy-
namic data structures (code with pointers) preclude static
analysis. The IA-64 architecture supports such data spec-
ulation by introducing advance load instructions. An ad-
vance load behaves like a normal load in accessing memory.
However, in addition to that, the target register, load address
and number of bytes being loaded are entered in the Ad-
vance Load Address Table (ALAT). Every store instruction
checks the ALAT for entries with overlapping addresses.
Such entries are invalidated. At the original location of the
load in the instruction stream, a speculation check (chk.a)
instruction is placed. When executed, it checks the ALAT
for the entry inserted by the corresponding advance load. If
the entry is present, speculation has succeeded. Otherwise
it has failed, and a branch is taken to fix-up code.

Peppermint currently does not model the ALAT. How-
ever it does issue advance loads to memory, which is what
the architecture specifies. Notice also that during the cap-
ture of a trace by Sled , if the application has any failed
speculation, it will branch to fix-up code. The execution of
that fix-up code will get recorded in the trace. So modeling
the ALAT is not necessary unless one is experimenting with
the design of the ALAT. In that case, however, one must use
Peppermint in execution-driven mode so that the branch to
fix-up code is only taken when the modeled ALAT indicates
failure of speculation.

2.1.4 Control Speculation

Control speculation allows the compiler to minimize the
stall due to load instructions that suffer large latencies re-
sulting from cache misses. The compiler can speculatively
schedule such loads far ahead of their normal position in
the instruction stream, even before intervening branch in-
structions. This indicates the load should be executed con-

ditionally depending on the outcome of the branches. For
such speculative loads, exceptions such as page faults are
deferred until the outcome of the speculated branches are
known. Peppermint currently does not model exceptions.
All loads are sent to the memory hierarchy. Like data spec-
ulation, it can be added to the model. However Peppermint
must be used in execution-driven mode, as explained in Sec-
tion 2.1.3.

2.1.5 Register Remapping

In the IA-64 architecture, instructions dispersed to func-
tional units, must undergo register remapping before be-
ing able to access the register file. There are 2 features of
the IA-64 Instruction Set Architecture that require remap-
ping of register names: register stacking and register rota-
tion. Register stacking ensures that each active frame on
the procedure call stack of a program can use its own reg-
ister frame consisting of potentially all physical registers in
the general register file. Hardware transparently manages
the register file in two ways. It remaps the register num-
ber in the instruction to the correct physical register. It also
spills and restores registers between the general register file
and backing store in memory. Register rotation enhances
instruction-level parallelism; it allows overlapped execution
of loop iterations, known as software pipelining. This is
done without requiring the compiler to unroll the loop body
when generating code. This is possible since the hardware
manages counters called rotating register base (RRB) that
can remap the register number in an instruction to different
physical registers in different iterations.

Register remapping is handled in both Peppermint and
Sled. Firstly, Sled reads the Current Frame Marker (CFM)
register to extract the parameters governing stacking and ro-
tation. Then it does the appropriate modulo arithmetic to
identify the physical register to be read. Since the regis-
ter is spilled to the backing store during trace generation,
the correct location in memory is then read. Similarly, Pep-
permint models the Current Frame Marker and related reg-
isters, and simulates the effect of all instructions that af-
fect them. Examples of such instructions are alloc, br.call,
brl.call, br.ret, cover and clrrrb . Furthermore, it also im-
plements the remapping function. However it diverges from
the hardware in assuming a very large physical register set.
So memory traffic resulting from spilling or restoring regis-
ters is not simulated.

2.1.6 Cache Hierarchy

Peppermint simulates all three levels of cache present in the
Itanium processor family. The simulator is highly parame-
terized, and the cache configuration can be easily modified
to explore the design space with simulations. Parameters
that could be changed for each cache include the size, line

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

size, associativity, line replacement policy, number of ports,
access latency and number of outstanding misses. Also
caches can be turned off selectively to alter the depth of the
cache hierarchy. Instantiating an additional level of cache
and adding it to the configuration file is quite simple. Cur-
rently Peppermint makes some simplifying assumptions re-
garding access latency. Exceptional cases are not treated
separately. Instead all integer loads have a latency of 2, 6
or 21 cycles depending on whether they hit in the Itanium’s
L1D, L2 or L3 cache respectively. Instruction fetches have
a latency of 1, 5 or 20 cycles depending on whether they hit
in the Itanium’s L1I, L2 or L3 cache respectively. Floating-
point loads bypass the first level of cache, and incur a la-
tency of 9 or 24 cycles, depending on whether there is a
hit in L2 or L3 cache. All types of loads that miss in the
L3 cache access memory by initiating a transaction on the
system bus. The details are described in the following sec-
tions. Peppermint also supports a limit on the number of
outstanding misses for each level of the cache hierarchy.

Changing the values for the different parameters simply
requires modification of these values in the configuration
file. However treating special cases separately, that are not
already handled in Peppermint, will require addition of code
to dynamically override the latency when the exception oc-
curs. Since Peppermint decodes each instruction, the frame-
work is present for such code to be added easily.

2.2 System Bus

We simulate a pipelined, split-transaction system bus.
The frequency is parameterized. Arbitration is done in
round-robin order among the requesting caches. The ar-
bitration algorithm can be called by higher-priority I/O de-
vices. However the current model does not include such
devices.

2.3 Memory Controller

We have parameterized the memory controller so that
the bits from the physical address to be used for row ad-
dress, column address and bank can be specified in the con-
figuration file. This allows us to study different memory
configurations. Other parameters that can be varied include
the number of open pages and size of outstanding read and
write queues in the memory controller. Scheduling poli-
cies for memory accesses can also be studied. We schedule
reads with a higher priority than writes, with some excep-
tions such as the presence of overlapping writes. However a
whole range of policies can be studied by writing the appro-
priate function for selecting among the different queues for
reads, writes, precharge and activation. Additional queues
can also be defined if needed. However since we do not
model the internal logic of the memory controller, we as-

sume a constant time overhead in addition to the waiting
time in the queues. This overhead is parameterized, and
memory benchmarks could possibly be used to approximate
the value for a computer system. For DRAM, important
parameters available for DRAM data sheets are parameter-
ized. Various situations such as precharge and hit on an
open page are modeled. Accordingly, the latency seen by
each memory access varies.

2.4 Performance and Validation

The cache system of Peppermint has been validated
against Dinero [8]. Preliminary validation has indicated
that the margin of error is within 20%. Further detailed
validation is planned using the McKinley processor. The
throughput of Peppermint will depend on the details being
simulated. Table 1 gives an idea of how the throughput of
Peppermint varies with the benchmark used and with the
length of the trace. Unlike [11], we do not use sampling.
All instructions are simulated. Hence our throughput num-
bers cannot be directly compared to theirs.

Program Instructions Throughput
(instr / sec)

MCF 100 K 7692
MCF 1 M 11494

VORTEX 100 K 20000
VORTEX 1 M 22727

Table 1. Throughput of Peppermint for SPEC
2000 benchmark programs, MCF and VOR-
TEX, on a HP Kayak XU 800 workstation
with 733 MHz Pentium III processor and 256
MBytes RDRAM

3 Trace Generation Tool: Sled

Peppermint currently does only trace-driven perfor-
mance simulation. A trace generation tool is required
to produce the input for the simulator. Trace collection
methods have been classified into at least five different
types: probe-based, microcode modification, instruction
set-emulation, static code annotation, and single-step exe-
cution [12]. A trace generation tool called Sled was devel-
oped to collect the input traces for the Peppermint simulator.
Sled can single-step application processes and thus collect
instruction and address traces. These traces are unfiltered
since they are collected before going through the various
cache levels. This feature is useful for exploring design
parameters in the memory hierarchy such as the effect of
changing the cache sizes, latencies or associativity.

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

3.1 Implementation Details

Sled currently produces traces in a modified Dinero for-
mat [8]. The basic record type is explained in [2]. Sled is
basically a program that can control the execution of an-
other process. Under Linux the required functionality is
provided through the ptrace(2) system call. In HP-UX 11i
the ttrace(2) call provides similar function. These system
calls provide support to manipulate the execution state of a
process. They can be used to single-step the execution, to
read and modify most of the registers of a stopped process,
as well as to read any location of the memory space of the
process. The register reading facility is used extensively by
Sled to collect instruction trace data by reading the Program
Counter. Memory locations are read to extract the current
execution bundle from the process image.

A monitored process is usually created by Sled forking
and then executing the program of interest. However, Sled
can also be attached to a running process by specifying the
process id. If Sled forks a child, the new process puts it-
self into a traceable state and waits for the parent. The par-
ent Sled process can set a breakpoint if specified. It then
signals the child to proceed. The child process executes
the program of interest, which runs till the breakpoint. The
hardware debug registers of the Itanium are used to set these
breakpoints, but a similar objective could be achieved by
modifying the programs code space and inserting a software
breakpoint.

Once the child reaches the first breakpoint, the parent
can collect statistics, and disable this breakpoint. Trace col-
lection would typically be enabled only after reaching the
first breakpoint. If the last breakpoint is specified, it is set
at this time. This allows Sled to collect data even within a
‘backward’ window in the program.

Depending on the arguments to Sled , the child program
either proceeds or is single-stepped till it exits or reaches the
last breakpoint. At this point, the parent can stop generating
trace records, or get the current values of the PMU counters.
The parent process detaches itself from the child. The child
process can then run to completion. As a convenience, a
termination signal can also be sent to the child at this time.
This is especially convenient for collecting data in a limited
range of a long running program.

In tracing mode, Sled reads the value of the instruction
pointer from the context of the child at every trap point.
The current instruction bundle is then read by dereferencing
this value and reading from the memory image of the pro-
cess being monitored. Memory accesses are then detected
by disassembling the contents of the bundle. The bundles
are decoded using code from the IA-64 version of the GNU
binutils. If a memory access is found, its address is read
from the corresponding indirection register. In case of Ita-
nium, this may require reading registers from the backing

store. If a memory access occurs in a loop, the registers
also have to be de-rotated before they can be read. Sled also
determines the contents of the predicate register and thus
creates the appropriate record entry. The decoded bundles
are cached in a direct mapped buffer. This saves the cost
of system calls for the next time that these instruction bun-
dles would have to be read from the memory image of the
process.

In addition to collecting address and instruction traces,
Sled can also be used as a performance measurement tool.
It uses the perfmonctl system call available in the Linux IA-
64 kernel to access the performance monitoring registers
available on the Itanium. Sled provides the capability to
collect detailed statistics around any window of execution
of a program. One extension planned for Sled is the ability
to reset breakpoints, so that one can accumulate the perfor-
mance data for a region of code that get executed repeat-
edly. This overcomes one fundamental limitation in the Ita-
nium implementation of the Performance Monitoring Unit.
Specifically, address range based performance monitoring
is not available for all possible event types, for example
CPU CYCLES [6].

3.2 Sled Performance

One metric proposed for evaluating the quality of a trace
collection tool is the slowdown compared to a full speed
execution of the same piece of code [12]. The slowdown
reported for single-step based trace collection cover a wide
range, from 100 [1], 1000 [4], to 10,000 [5]. As shown in
Table 2, the slowdown as seen on a 800 MHz dual Itanium
system lies towards the low end of reported figures. p

Program Instr Full Trace Slowdown
Speed Enabled

(Millions) (sec) (sec)
MCF 3.17 1.08 59.23 60

VORTEX 1.26 0.21 41.7 200

Table 2. Trace collection slowdown for SPEC
2000 benchmark programs, MCF and VOR-
TEX

Trace collection is more expensive than merely single-
stepping the processor, since system calls are required to
read the instruction pointer, the bundles, and in case of a
memory access, the contents of the indirection register, the
predicate register and the backing store. However, the bun-
dle cache performs fairly well as seen by the data in Table 3.
It is can be seen that the single stepping cost and trace col-
lection cost both scale linearly with the length of the trace

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

collected, and that the overhead for trace collection lies be-
tween 20 - 30 % of the execution time.

Instruction Count Single step Trace collect
(sec) (sec)

1 Million 23.49 28.44
10 Million 211.14 270.38

100 Million 2174.00 2691.59

Table 3. Single stepping and Trace collection
time for SPEC 2000 benchmark program, MCF

4 Experimental Evaluation of Systems

Next we present results based on experimental evalu-
ation of systems based on Itanium and McKinley proces-
sors. Systems based on Itanium and McKinley processors
differ not only in the processor, but also in the system bus
and memory. Peppermint allows us to explore the design
space by doing controlled experiments. We compare 2 sys-
tems based on these 2 processors, with typical configura-
tions for system bus and memory, to get an estimate of
the performance improvement for different applications be-
tween these 2 systems. We also vary design parameters
to get a sense of what contributes to the difference in per-
formance. The differences between the systems compared
are presented in Table 4. More detailed comparison can be
made by comparing the configuration files for Itanium and
McKinley presented in the Appendix of [2].

Parameter Itanium McKinley
Processor Frequency 800 MHz 900 MHz

Third-level Cache 4 MB 3 MB
System-bus Frequency 133 MHz 200 MHz

System-bus Width 64 bits 128 bits
Double Data Rate DRAM No Yes

Table 4. Some Difference in system parame-
ters between the 2 systems

5 Results

In the first set of experiments shown in Figure 2, we
compare the execution of Itanium and McKinley based sys-
tems compared in Table 4. The metrics used are instructions
per cycle (IPC) and instructions per second (IPS). Each line
shows the corresponding metric for McKinley normalized

to that of Itanium. The results show that for the applica-
tion traces used, the performance improvement of McKin-
ley over Itanium can range from 7% to over 100%, when
comparing IPC. With IPS, the results are even better, since
the frequency of the McKinley processor used in our exper-
iments is higher than that of Itanium.

In the second set of experiments shown in Figure 3, we
take the total execution cycles of each application, normal-
ized to the longest running application, and plot a bar graph.
Each bar shows 5 components. The Busy component counts
cycles in which at least 1 instruction is dispersed by the
front end of the processor pipeline. The remaining com-
ponents measure stalls in instruction dispersal. They are at-
tributed to instruction fetch (Ifetch) when the stall results
from the decoupling buffer being empty. If the stall oc-
curs because an issue port cannot be assigned to the instruc-
tion, it is attributed to functional units (Funit). If a data de-
pendency forces instruction dispersal to be stalled, it is ac-
counted for in the DataDep component. Finally the Cache
component account for stalls reached when loads or stores
cannot be issued due to the limit on outstanding misses in
the caches.

On the X-axis, each bar has a label. The first character
indicates the application, which can be Gap (G), Transcoder
(T), Mcf (M) or Vortex (V). The second character indicates
whether the system simulated is an Uniprocessor (u) or
Multiprocessor (m), specifically a 2-processor SMP. The
last character indicates Itanium (I) or McKinley (M), indi-
cating the system parameters used, as shown in Table 4.

Both gap and transcoder are quite compute-intensive
and most of their execution time can be attributed to Busy
cycles in which 1 or more instructions are issued. The
FUstall component of transcoder, which represents stall
due to unavailability of functional units, decreases from
13% for Itanium to 8% for McKinley. This is due to the
increased number of functional units in Mckinley. This
increases the IPC of transcoder by 7%. For gap, the
improvement in execution time from Itanium to Mckinley
can be attributed to both DDstall and IFstall, stalls due
to data dependencies and instruction fetches respectively.
The larger size and line size of the second-level cache in
Mckinley benefits gap. It also benefits significantly from
the better memory system of Mckinley (double-data rate and
higher frequency), which implies lower latency for third-
level cache misses. Its IPC increases by 11%. For the dual-
processor configurations, both applications maintain their
performance improvement from Itanium to Mckinley.

The uniprocessor execution of mcf on Itanium and
Mckinley show a huge difference in performance. This is
because the execution of mcf on Itanium is dominated by
data dependency stalls (DDstall). It accounts for 86% of the
execution time. Mckinley cuts down this component to 75%.
This improves the IPC of mcf by 100%. This is despite the

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

0

0.5

1

1.5

2

2.5

gap mcf transcoder vortex

Normalized IPC

Normalized IPS

Figure 2. Relative IPC and IPS

fact that Mckinley has 3 MBytes of third-level cache, com-
pared to 4 MBytes in Itanium. The primary contributor for
this performance improvement is the better memory system
of Mckinley as explained in the previous paragraph. The
memory system is critical for mcf, because mcf is pointer-
intensive, and has low cache hit rates. The problem is more
acute in IA-64 architectures, where the pointers increase to
64 bits in width, and result in larger working sets. For the
dual-processor execution of mcf with vortex, we find that
improvement in IPC is only 36% from Itanium to Mckin-
ley. This is due to the higher contention for system bus
and memory in the dual-processor systems. For mcf on the
uniprocessor systems, bus utilization was 71% and 76% for
Itanium and Mckinley respectively. For the dual-processor
systems, we found the bus utilization to be 77% and 79% for
Itanium and Mckinley respectively. The number of memory
accesses that had to be retried because the memory con-
troller had reached the limit on pending reads or writes was
5.2 million and 2.7 million on Itanium and Mckinley re-
spectively in the uniprocessor case. For the dual-processor
case,the number of retries were 7.3 million and 3.0 million
on Itanium and Mckinley respectively. The average latency
of a read serviced by memory was 103 processor cycles
for Itanium and only 72 cycles for Mckinley; difference be-
tween uniprocessor and dual-processor configurations was
negligible. This implies that memory bank conflicts did not
change significantly with increase from 1 to 2 processors.
To summarize, the main problems observed in the SMP case
are high bus utilization and increased retries as a result of
queues in the memory controller reaching their limit. So

improving system bus bandwidth and increasing the queue
sizes in the memory controller might be the first steps in
improving SMP performance.

The uniprocessor runs of vortex on Mckinley yields an
improvement of 21% in IPC over Itanium. This is a result
of reduction in stalls due to data dependencies (DDstall)
and instruction fetches (IFstall). In the dual-processor case,
the improvement in IPC for vortex is only 16%. Again this
can be attributed to the higher contention for system bus
and memory. The number of retries induced by the memory
controller in the dual-processor case, as mentioned earlier,
were 7.3 million and 3.0 million on Itanium and Mckinley
respectively. For the uniprocessor case, vortex had 1.8 mil-
lion and 0.8 million retries for Itanium and Mckinley respec-
tively.

5.1 Parameter Sensitivity

We also studied variation of some system parameters.
Figure 4 shows the effect of varying the frequency of the
system bus. The total execution cycles of each application
is plotted relative to the longest running application, which
is normalized to 100. Each bar is labeled on the X-axis
with 1 or 2 applications (G, M, T or V), followed by the
system architecture (I or M) and bus frequency. For the Ita-
nium system configuration, the bus frequencies chosen are
133, 266 and 333 MHz, corresponding to labels 1, 2, and
3 respectively. For McKinley, the corresponding bus fre-
quencies are 200, 333 and 450 MHz respectively. The most
significant improvement in performance has been observed

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

0

20

40

60

80

100

120

GuI TuI
Gm

I
Tm

I
GuM TuM

Gm
M

Tm
M M

uI VuI
M

m
I

Vm
I

M
uM VuM

M
m

M
Vm

M

Applications + Architecture

N
o

rm
al

iz
ed

 C
yc

le
s

Cache

DataDep

Funit

Ifetch

Busy

Figure 3. Breakdown of normalized execution cycles

in mcf. The DataDep component shows significant reduc-
tion for this application on both Itanium and McKinley. On
Itanium, for example, its IPC increases by 42% if the bus
frequency is increased from 133 to 333 MHz.

Figure 5 shows the effect of varying the size of the third-
level cache. The total execution cycles of each application
is plotted relative to the longest running application, which
is normalized to 100. Each bar is labeled on the X-axis with
1 or 2 applications (G, M, T or V), followed by the system
architecture (I or M) and finally the size of the third-level
cache (3, 4, 8 or 16 M). Increasing cache size yields bet-
ter performance improvement compared to increasing bus
frequency. In fact, the IPC for mcf on Itanium increased
by 42% due to increase in system bus frequency, while it
increased by 120% due to increase in cache size. The re-
sults turned out to be additive. That is, the 2 enhancements
together increased IPC by 162%. For McKinley, the im-
provement in IPC resulting from increasing bus frequency
to 333 MHZ was 30%, while increasing third-level cache
size to 8 MBytes increased IPC by 113%. Together, these 2
enhancements increased IPC by 126%.

6 Conclusion

This paper describes the implementation of Peppermint
and Sled: tools for cycle-accurate, trace-driven simulation
of applications running on IA-64 processors. We find that

the improvement in IPC of McKinley relative to Itanium
ranges from 7% to over 100% for our different experiments.
The improvement can be attributed to a variety of factors.
These range from the availability of additional functional
units and issue ports in the McKinley processor to our as-
sumption of a better memory system. While the improve-
ment in performance remains valid in SMP systems in some
cases, higher contention for system bus and memory re-
duces the performance gain in other cases. Increasing the
system bus bandwidth and size of queues for pending re-
quests in the memory controller are identified as first steps
for optimizing SMP performance.

References

[1] A. Agarwal, J. Hennessy, and M. Horowitz. Cache Perfor-
mance of Operating System and Multiprogrammed Work-
loads. ACM Transactions on Computer Science, 6(4):393 –
431, 1988.

[2] S. Basu, S. Roy, R. Kumar, T. Fisher, and B. E.
Blaho. Peppermint and Sled: Tools for Evaluating
SMP Systems based on IA-64 (IPF) Processors. Techni-
cal report, Hewlett-Packard Labs, 2002. Available from
http://www.hpl.hp.com/techreports/index.html.

[3] D. Burger and T. Austin. The SimpleScalar Tool Set. Tech-
nical Report 1342, University of Wisconsin, 1997.

[4] J. K. Flanagan, B. E. Nelson, J. K. Archibald, and K. Grim-
srud. BACH: BYU Address Collection Hardware, The Col-

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

0

20

40

60

80

100

120

GI1 GI3
GM

2
M

I2
M

M
1

M
M

3
TI1 TI3

TM
2 VI2

VM
1

VM
3

GTI1
GTI3

GTM
2

M
VI2

M
VM

1

M
VM

3

Applications + Architecture

N
o

rm
al

iz
ed

 C
yc

le
s

Cache

DataDep

Funit

Ifetch

Busy

Figure 4. Effect of Bus Frequency on Execution Time

lection of Complete Traces. In Proceedings of the 6th Inter-
national Conference on Modelling Techniques and Tools for
Computer Performance Evaluation, pages 128 – 137, 1992.

[5] M. Holliday. Techniques for Cache and Memory Simulation
using Address Reference Traces. International Journal in
Computer Simulation, 1:129 – 151, 1991.

[6] intel. Intel RIA-64 Architecture Software Developer’s Man-
ual, volume 4, chapter Processor Performance Monitoring.
Intel Corporation, 1.1 edition, July 2000.

[7] Intel Corporation. Itanium Processor Mi-
croarchitecture Reference, August 2000. Doc-
ument Number 245473-002, Available from
http://developer.intel.com/design/itanium/manuals/.

[8] Jan Edler and Mark D. Hill. Dinero IV Trace-
Driven Uniprocessor Cache Simulator. Technical re-
port, University of Wisconsin, 1999. Available at
http://www.cs.wisc.edu/ markhill/DineroIV/.

[9] A.-T. Nguyen, M. Michael, A. Sharma, and J. Torrellas. The
augmint multiprocessor simulation toolkit for intel x86 ar-
chitectures. In International Conference on Computer De-
sign (ICCD), 1996.

[10] H. Sharangpani and K. Arora. Itanium processor microar-
chitecture. IEEE Micro, pages 24–43, September-October
2000.

[11] R. Uhlig, R. Fishtein, O. Gershon, I. Hirsh, and
H. Wang. Softsdv: A presilicon software develop-
ment environment for the ia-64 architecture. Intel Tech-
nology Journal, 4th Quarter 1999. Available from
http://developer.intel.com/technology/itj/.

[12] R. A. Uhlig and T. N. Mudge. Trace-driven Memory Simu-
lation: a Survey. ACM Computing Surveys, 29(2):128 – 170,
June 1997.

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

0

20

40

60

80

100

120

GI4
M

GI8
M

GI1
6M

GM
3M

GM
8M

GM
16

M
M

I4
M

M
I8

M

M
I1

6M

M
M

3M

M
M

8M

M
M

16
M

TI4
M

TI8
M

TI1
6M

TM
3M

TM
8M

TM
16

M
VI4

M
VI8

M

VI1
6M

VM
3M

VM
8M

VM
16

M

Applications + Architecture

N
o

rm
al

iz
ed

 C
yc

le
s

Cache

DataDep

Funit

Ifetch

Busy

Figure 5. Effect of Level 3 Cache Size on Execution Time

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

	IPDPS 2002
	Return to Main Menu

